Modèles intermédiaires de dynamique océanique
Annales mathématiques Blaise Pascal, Tome 9 (2002) no. 2, pp. 213-227.
@article{AMBP_2002__9_2_213_0,
     author = {Carton, Xavier and Baraille, R\'emy and Filatoff, Nicolas},
     title = {Mod\`eles interm\'ediaires de dynamique oc\'eanique},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {213--227},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {9},
     number = {2},
     year = {2002},
     mrnumber = {1969079},
     zbl = {02081311},
     language = {fr},
     url = {http://www.numdam.org/item/AMBP_2002__9_2_213_0/}
}
TY  - JOUR
AU  - Carton, Xavier
AU  - Baraille, Rémy
AU  - Filatoff, Nicolas
TI  - Modèles intermédiaires de dynamique océanique
JO  - Annales mathématiques Blaise Pascal
PY  - 2002
SP  - 213
EP  - 227
VL  - 9
IS  - 2
PB  - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
UR  - http://www.numdam.org/item/AMBP_2002__9_2_213_0/
LA  - fr
ID  - AMBP_2002__9_2_213_0
ER  - 
%0 Journal Article
%A Carton, Xavier
%A Baraille, Rémy
%A Filatoff, Nicolas
%T Modèles intermédiaires de dynamique océanique
%J Annales mathématiques Blaise Pascal
%D 2002
%P 213-227
%V 9
%N 2
%I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
%U http://www.numdam.org/item/AMBP_2002__9_2_213_0/
%G fr
%F AMBP_2002__9_2_213_0
Carton, Xavier; Baraille, Rémy; Filatoff, Nicolas. Modèles intermédiaires de dynamique océanique. Annales mathématiques Blaise Pascal, Tome 9 (2002) no. 2, pp. 213-227. http://www.numdam.org/item/AMBP_2002__9_2_213_0/

[1] J.S. Allen, J.A. Barth, et P.A. Newberger. On intermediate models for barotropic continental shelf and slope flow fields. part 1. J. Phys. Oceanogr., 20:1017-1043, 1990.

[2] M. Benjelloul et X. Carton. Asymptotic models and application to vortex dynamics. In P.F. Hodnett, Advances in mathematical modelling of atmosphere and ocean dynamics, pages 87-92. Kluwer Acad. Publ., 2001.

[3] K. Bryan et M.D. Cox. A nonlinear model of an ocean driven by wind and differential heating; parts 1 and 2. J. Atmos. Sci., 25:945-978, 1968.

[4] X. Carton, G.R. Flierl, et L.M. Polvani. The generation of tripoles from unstable axisymmetric vortex structures. Europhys. Lett., 9:339-344, 1989.

[5] B. Cushman-Roisin et B. Tang. Geostrophic turbulence and emergence of eddies beyond the radius of deformation. J. Phys. Oceanogr., 20:97-113, 1990.

[6] N. Filatoff, X. Carton, et S. Pous. Intermediate models based on geostrophic dynamics. Rapport d'études 06/97 EPSHOM/CMO, Brest (France), 1997.

[7] S. Lacroix. Méthodes de vortex; application aux modèles intermédiaires. Rapport de DEA, LMC, Univ. J. Fourier, Grenoble (France), 1999.

[8] F. Maupas. Etude relative à la modélisation intermédiaire de la dynamique côtière basse fréquence. Rapport d'étude LPO/Univ. Brest (France) pour la convention d'étude EPSHOM 22/96, 1997.

[9] M.E. Mcintyre et W.A. Norton. Potential vorticity inversion on the sphere. J. Atmos. Sci., 57:1214-1235, 2000. | MR

[10] A.R. Mohebalhojeh et D.G. Dritschel. On the representation of gravity waves in numerical models of the shallow-water equations. Q. J. R. Meteorol. Soc., 126:669-688, 2000.

[11] E.G. Pavia. A numerical study of merging and axisymmetrization of oceanic vortices. Ph.D. manuscript, The Florida State University, Tallahassee (USA), 1989.

[12] S. Pous. Développement de modèles intermédiaires à gravité réduite. Rapport de Maitrise Physique et Applications, Univ. Paris 6 (France), 1995.

[13] Georgi G. Sutyrin. Long-lived planetary vortices and their evolution: conservative intermediate geostrophic model. Chaos, 4:203-212, 1994.

[14] I. Yavneh et J.C. Mcwilliams. Breakdown of the slow manifold in the shallow-water equations. Geophys. Asrophys. Fluid Dyn., 75:131-161, 1994.

[15] I. Yavneh et J.C. Mcwilliams. Robust multigrid solution of the shallow-water balance equations. J. Comp. Phys., 119:1-25, 1995. | MR | Zbl

[16] I. Yavneh, A. Schchepetkin, J.C. Mcwilliams, et L.P. Graves. Multigrid solution of rotating stably-stratified flows. J. Comp. Phys., 136:245-262, 1997. | MR | Zbl