P.N. NATARAJAN

Some properties of the *Y*-method of summability in complete ultrametric fields

Annales mathématiques Blaise Pascal, tome 9, nº 1 (2002), p. 79-84 http://www.numdam.org/item?id=AMBP_2002_91790>

© Annales mathématiques Blaise Pascal, 2002, tous droits réservés.

L'accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http:// math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ANNALES MATHEMATIQUES BLAISE PASCAL 9, 79-84 (2002)

Some properties of the Y- method of summability in complete ultrametric fields

P. N. Natarajan

Abstract

In this paper, a few results regarding the Y-method of summability in complete ultrametric fields are proved.

Let K be a complete ultrametric field. Throughout the present paper, infinite matrices, sequences and series have entries in K. Given an infinite matrix $A = (\alpha_i^j), i, j = 0, 1, 2, \cdots$ and a sequence $\{u_j\}, j = 0, 1, 2, \cdots$, by the A-transform of $\{u_j\}$, we mean the sequence $\{v_i\}$,

$$v_i = \sum_{j=0}^{\infty} \alpha_i^j u_j, i = 0, 1, 2, \cdots,$$

where it is assumed that the series on the right converge. If $\lim_{i\to\infty} v_i = s$, we say that the sequence $\{u_i\}$ is A-summable to s.

The Y-method of summability in K is defined as follows: the Y-method is given by the infinite matrix $Y = (\alpha_i^j)$, where

$$\alpha_i^j = \lambda_{i-j},$$

 $\{\lambda_n\}$ being a bounded sequence in K. Srinivasan's method [4] is a particular case with $K = \mathbb{Q}_p$, the *p*-adic field for a prime $p, \lambda_0 = \lambda_1 = \frac{1}{2}, \lambda_n = 0, n > 1$.

We shall prove a few results about the Y-method using properties of analytic functions (a general reference in this direction is [2]).

Let U be the closed unit disk in K and let H(U) be the set of all power series converging in U, with coefficients in K. Let $h(x) = \sum_{n=0}^{\infty} u_n x^n$ and

AMS subject classification: 40

Keywords: complete ultrametric field, Y- method of summability, p-adic field, power series, analytic functions, summability factors.

P. N. NATARAJAN

 $l(x) = \sum_{n=1}^{\infty} v_n x^n$. The following result is easily proved.

Lemma 1. The sequence $\{u_n\}$ is Y- summable to s if and only if the function l is of the form

$$l(x) = \frac{s}{1-x} + \psi(x),$$

where $\psi \in H(U)$. We now have

Lemma 2. Let $\phi(x) = \sum_{n=0}^{\infty} \lambda_n x^n$. The Y-transform $\{v_n\}$ of the sequence $\{u_n\}$ satisfies

$$l(x) = \phi(x)h(x),$$

i.e., The Y-transform $\{v_n\}$ of $\{u_n\}$ is the convolution product of $\{u_n\}$ and $\{\lambda_n\}.$

Most of the theorems that are proved in the sequel use the following basic Lemma which is true in any complete ultrametric field and which follows as a corollary of the Hensel Lemma.

Lemma 3. Let $h \in H(U)$ and $a \in U$ such that h(a) = 0. Then there exists $t \in H(U)$ such that

$$h(x) = (x - a)t(x).$$

We now prove the main results of the paper.

Theorem 1. If $\{a_n\}$ is Y-summable to $0, \{b_n\}$ is Y-summable to B, then $\{c_n\}$ is Y-summable to $B\left(\sum_{n=0}^{\infty}a_n\right)$, where $c_n = \sum_{k=0}^n a_k b_{n-k}, n = 0, 1, 2, \cdots$, *i.e.*, $\{c_n\}$ is the convolution product of $\{a_n\}$ and $\{b_n\}$. **Proof.** Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ and $g(x) = \sum_{n=0}^{\infty} b_n x^n$. Then $\phi(x) f(x) \in H(U)$ and $\phi(x)g(x) = \frac{B}{1-x} + \hat{\theta}(x)$, where $\theta \in H(U)$. Consequently the convolution product $\{c_n\}$ of the sequences $\{a_n\}$ and $\{b_n\}$ satisfies:

$$\phi(x)\sum_{n=0}^{\infty}c_nx^n = (\phi(x)g(x))f(x)$$
$$= \left(\frac{B}{1-x} + \theta(x)\right)f(x)$$
$$= \left(\frac{B}{1-x} + \theta(x)\right)\left\{f(1) + (f(x) - f(1))\right\}$$

PROPERTIES OF THE Y-METHOD

$$= \frac{Bf(1)}{1-x} + \frac{B(f(x) - f(1))}{1-x} + \theta(x)f(x).$$

In view of Lemma 3, $\frac{f(x)-f(1)}{1-x} \in H(U)$. So

$$\phi(x)\sum_{n=0}^{\infty}c_nx^n=\frac{Bf(1)}{1-x}+\gamma(x),$$

where $\gamma \in H(U)$. Using Lemma 1, the result follows. **Theorem 2.** Let K be a complete ultrametric field of characteristic $\neq 2$. Let $\lambda_0 = \lambda_1 = \frac{1}{2}, \lambda_n = 0, n > 1$. If $\{a_n\}$ is Y-summable to A, $\{b_n\}$ is Y-summable to B, then

$$\lim_{n\to\infty}(\gamma_{n+2}-\gamma_n)=2AB,$$

where $\{\gamma_n\}$ is the Y-transform of $\{c_n\}$. **Proof.** Let us retain the same notations regarding f, g. Let $F(x) = \phi(x)g(x)f(x)$. Again $\phi(x)g(x) = \frac{B}{1-x} + \theta(x), \phi(x)f(x) = \frac{A}{1-x} + \xi(x)$, where $\theta, \xi \in H(U)$. Hence

$$\phi^{2}(x)f(x)g(x) = \frac{AB}{(1-x)^{2}} + \frac{A\theta(x) + B\xi(x)}{1-x} + \xi(x)\theta(x).$$

On the other hand, let $h(x) = \sum_{n=0}^{\infty} \gamma_n x^n$. Then $h(x) = \phi(x) f(x) g(x)$ so that

 $\phi^2(x)f(x)g(x) = \phi(x)h(x)$ and consequently

$$\phi(x)h(x) = \frac{AB}{(1-x)^2} + \frac{\omega(x)}{1-x},$$

where $\omega \in H(U)$. Now,

$$(1-x)\phi(x)h(x) = \frac{AB}{1-x} + \omega(x).$$

Since $\lambda_0 = \lambda_1 = \frac{1}{2}$, $\lambda_n = 0, n > 1, \phi(x) = \frac{1+x}{2}$ and so

$$(1-x)\left(\frac{1+x}{2}\right)h(x) = \frac{AB}{1-x} + \omega(x)$$

i.e.,
$$\left(\frac{1-x^2}{2}\right)h(x) = \frac{AB}{1-x} + \omega(x)$$

i.e.,
$$\sum_{n=0}^{\infty} \left(\frac{\gamma_n - \gamma_{n-2}}{2}\right) x^n = \frac{AB}{1-x} + \omega(x).$$

P. N. NATARAJAN

Now the result follows using Lemma 1.

We now return back to the general case when $\{\lambda_n\}$ is a bounded sequence in any complete ultrametric field K and $\alpha_i^j = \lambda_{i-j}, i, j = 0, 1, 2, \cdots$. **Definition.** The series $\sum_{k=0}^{\infty} a_k$ is said to be Y-summable to l if $\{s_n\}$ is Ysummable to l, where $s_n = \sum_{k=0}^{n} a_k, n = 0, 1, 2, \cdots$. We now have **Theorem 3.** Suppose $\lim_{n \to \infty} a_n = 0$ and $\sum_{n=0}^{\infty} a_n = l$. Let $\sum_{n=0}^{\infty} b_n$ be Y-summable to m. Then $\sum_{n=0}^{\infty} c_n$ is Y-summable to lm. **Proof.** Let $t_n = \sum_{k=0}^{n} b_k, w_n = \sum_{k=0}^{n} c_k, n = 0, 1, 2, \cdots$. Let f, g have the same meaning as in the preceding theorems. We notice that

$$\sum_{n=0}^{\infty} t_n x^n = g(x) \left(\sum_{n=0}^{\infty} x^n \right) = \frac{g(x)}{1-x}$$

Since $\{t_n\}$ is Y-summable to m, we have,

$$\frac{\phi(x)g(x)}{1-x} = \frac{m}{1-x} + \psi(x),$$

where $\psi \in H(U)$. Hence

$$\begin{aligned} \frac{\phi(x)f(x)g(x)}{1-x} &= m\frac{f(x)-f(1)}{1-x} + \frac{mf(1)}{1-x} + \psi(x) \\ &= \frac{mf(1)}{1-x} + \theta(x), \end{aligned}$$

where $\theta \in H(U)$ (this is so because $\frac{f(x)-f(1)}{1-x} \in H(U)$) and f(1) = l. The proof is now complete.

Remark 1. In the classical case, we have the following result: If $\sum_{n=0}^{\infty} |a_n| < \infty$ and $\sum_{n=0}^{\infty} a_n = l$, $\sum_{n=0}^{\infty} b_n$ is Y-summable to m, then $\sum_{n=0}^{\infty} c_n$ is Y-summable to

PROPERTIES OF THE Y-METHOD

lm. Theorem 3 thus gives yet another instance where absolute convergence in classical analysis is effectively replaced by ordinary convergence in non-archimedean analysis.

In the context of summability factors (For the definition of summability factors or convergence factors, see, for instance, [3], pp.38-39), the following result about the Y- method is interesting.

Theorem 4. Let
$$\lim_{n\to\infty} \lambda_n = 0$$
. If $\sum_{n=0}^{\infty} a_n$ is Y-summable and $\{b_n\}$ converges,

then $\sum_{n=0}^{\infty} a_n b_n$ is Y-summable.

Proof. Let $s_n = \sum_{k=0}^n a_k$, $n = 0, 1, 2, \dots, \{s_n\}$ be Y-summable to s, $\lim_{n \to \infty} b_n = m$. Let $b_n = m + \epsilon_n$ so that $\lim_{n \to \infty} \epsilon_n = 0$. Since $\lim_{n \to \infty} \lambda_n = 0$, $\phi \in H(U)$. Since $\{s_n\}$ is Y-summable to s, we have,

$$\frac{\phi(x)f(x)}{1-x} = \frac{s}{1-x} + \psi(x),$$

where $\psi \in H(U)$. Now,

$$\frac{\phi(x)\sum_{n=0}^{\infty}a_nb_nx^n}{1-x}=\frac{m\phi(x)f(x)}{1-x}+\frac{\phi(x)\theta(x)}{1-x},$$

where $\theta(x) = \sum_{n=0}^{\infty} \epsilon_n x^n$ and $\theta \in H(U)$. Consequently

$$\phi(x)\sum_{n=0}^{\infty}a_nb_nx^n = \frac{ms}{1-x} + \psi(x) + \frac{\phi(x)\theta(x)}{1-x}$$
$$= \frac{ms + \phi(1)\theta(1)}{1-x} + \omega(x),$$

where $\omega \in H(U)$ so that $\sum_{n=0}^{\infty} a_n b_n$ is Y-summable to $ms + \phi(1)\theta(1)$, completing the proof of the theorem.

Acknowledgement. The author thanks the referee very much for pointing out the remarkable connection between the Y-method and the properties of analytic functions.

P. N. NATARAJAN

References

- [1] G. Bachman, Introduction to p adic numbers and valuation theory. Academic Press, 1964.
- [2] A. Escassut, Analytic elements in p-adic Analysis. World Scientific Publishing Co., 1995.
- [3] Peyerimhoff, Lectures on summability, Springer, 1969.
- [4] V.K. Srinivasan, On certain summation processes in the p-adic field. Indag. Math. 27(1965), 319-325.

P. N. NATARAJAN Department of Mathematics Ramakrishna Mission Vivekananda College Chennai 600 004 India