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Some properties of the Y - method of
summability in complete ultrametric fields

P. N. Natarajan

ANNALES MATHEMATIQUES BLAISE PASCAL 9, 79-84 (2002)

Abstract

In this paper, a few results regarding the Y-method of summabil-
ity in complete ultrametric fields are proved.

Let K be a complete ultrametric field. Throughout the present paper,
infinite matrices, sequences and series have entries in K. Given an infinite
matrix A = (ai ), i, j = 0,1, 2, ~ ~ ~ and a sequence = 0,1, 2, ~ ~ ~ , by the
A-transform of {uj}, we mean the sequence {vi},

00

vi = = 0,1,2,...,
j=0

where it is assumed that the series on the right converge. If lim vi = s, we
i~~

say that the sequence {uj} is A-summable to s.
The Y-method of summability in K is defined as follows: the Y-method

is given by the infinite matrix Y = (ai ), where

03B1ji = 03BBi-j,

~a~,~ being a bounded sequence in K. Srinivasan’s method [4] is a particular
case with K = Q~, the p-adic field for a prime p, Ào = Ai = ~, Àn = 0, n > 1.

We shall prove a few results about the Y-method using properties of
analytic functions (a general reference in this direction is [2]).

Let U be the closed unit disk in K and let H(U) be the set of all power
series converging in U, with coefficients in K. Let h(x) = unxn and
__________________ 

n=o
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o

l(x) = £ vnxn. The following result is easily proved.
n=0

Lemma I. The sequence {un} is Y- summable to s if and only if the function
I is of the form

l(x) = s 1-x + 03C8(x),

where 03C8 e H(U) . We now have
o

Lemma 2. Let §(x) = £ The Y -transform {vn} of the sequence (un)
n=0

satisfies
l(x) = 03C6(x)h(x),

I.e., The Y -transform {vn} of {un} is the convolution product of {un} and
{03BBn}.

Most of the theorems that are proved in the sequel use the following basic
Lemma which is true in any complete ultrametric field and which follows as
a corollary of the Hensel Lemma.
Lemma 3. Let h e H(U) and a G U such that h(a) = 0. Then there exists
t e H(U) such that

l’z - a)t(x).
We now prove the main results of the paper.
Theorem I. If {an} is Y -summable to 0, {bn} is Y -summable to B, then

(cn ) is Y -summable to B £ an), where cn = £ akbn-k, , n = 0, 1 , 2, ... ,~ k=0

I, e., {cn} is the convolution product of {an} and {bn}.
ao o

Proof. Let f(x) = £ anxn and g(x) = £ bnxn. Then 03C6(x)f(x) e H(U)
n=0 n=0

and §(z)g(z) = £ + 0(z), where 0 e H(U) . Consequently the convolution
product {cn} of the sequences {an} and {bn} satisfies:

oo

03C6(x)cnxn = (03C6(x)g(x))f(x)

= (B 1 - x + 03B8(x)) f(x)

= ( B 1 - x z + °z» ifi> + fz> - f(1))}
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- 1-x + 1-x + 03B8(x)f(x).
In view of Lemma 3, f xl-~ 1 E H(U). So

~~x~ ~ ~nx " - Bf ~ ~~ + 71x)~
~,-o 

~ ~

where ~y E H(U). Using Lemma 1, the result 
follows.

Theorem 2. Let K be a complete ultrametric field of 
characteristic ~ 2. . Let

~o = ~1 = 2 ~ ~~. _ ~~ ~ ~ l If is Y-summable to A, is Y-summable

to B, then
lim (03B3n+2 - 03B3n) = 2AB,
n~~

where is the Y-transform of {cn}.
Proof. Let us retain the same notations regarding f , g. 

Let F(x) _ ~(~)g(x) f (x).

Again 03C6(x)g(x) = B 1-x + B(x), 03C6(x)f(x) = iAx + where 03B8,03BE E H(U).

Hence

AB + 
+ B03BE(x) 

+ 03BE(x)03B8(x).
- ’z 1 - x

On the other hand, let h(x) = 03A303B3nxn. Then h(x) _ 03C6(x) f(x)g(x) so that
n=0

03C62(x)f(x)g(x) - 03C6(x)h(x) and consequently

03C6(x)h(x) = AB (1 - x)2 + 03C9(x) 1 - x,
where ca E H(U). Now,

Since ao = ~i = 2, ~~. = 0, n > 1, ~(x) = 12y and so

(1 - x) (1+x 2) h(x) = AB 1 - x + 03C9(x)

i.e., (1-x2 2) h(x) = AB 1 - x + 03C9(x)
i.e., (03B3n-03B3n-2 2) xn = AB 1-x + 03C9(x).
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Now the result follows using Lemma 1.
We now return back to the general case when is a bounded sequence

in any complete ultrametric field K and of = i, j = 0, 1, 2, ....
00

Definition. The series ak is said to be Y-summable to I if {sn} is Y-
n

summable to l, where sn = L ak, n = 0,1, 2, ~ ~ ~ .
k=0

We now have 
~ 00 00

Theorem 3. Suppose lim an = 0 and an = t. Let ~ bn be Y-summable
n=0 n=0

00

to m. Then ~~ cn is Y-summable to lm.
n=o

n n

Proof. Let tn = ~ bk, wn = ~ c~, n = 0, l, 2, ~ ~ ~ . Let f , g have the same
k=0 k=0

meaning as in the preceding theorems. We notice that

tnxn = g(x) = 9(x) 1-x.
Since {tn} is Y-summable to m, we have,

03C6(x)g(x) m 1 - x = m 1 - x + 03C8(x),

where 03C8 ~ H(U). Hence

03C6(x)f(x)g(x) 1 - x 
= mf(x) - f(1) 1 - x + 

mf(1) 1 - x 
+ 03C8(x)

= mf(1) 1 - x + 03B8(x),

where 0 E H(U) ( this is so because E H(U)) and f (1) = L. The

proof is now complete.
00

Remark 1. . In the classical case, we have the following result: If 03A3 |an| [  o0

n=0
00 00 00

and Lan = L, 03A3bn is Y-summable to m, then 03A3cn is Y-summable to
n=0 n=0 n=0
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lm. Theorem 3 thus gives yet another instance where absolute convergence
in classical analysis is effectively replaced by ordinary convergence in non-
archimedean analysis.

In the context of summability factors (For the definition of summability
factors or convergence factors, see, for instance, [3], pp.38-39), the following
result about the Y- method is interesting.

00

Theorem 4. Let lim An = 0. I f an is Y- summable and {bn} converges,

then ~ anbn is Y-summable.
n=0

n

Proof. Let s~ = L ak, n = 0, 1 , 2, ... , ~sn~ be Y- summable to s, lim bn = m.~-~ n-oo
k=0

Let bn = m + En so that lim En = 0. Since lim An = 0, ~ E H(U). Since ~sn ~
n~~ n-o

is Y- summable to s, we have,

03C6(x)f(x) 1-x = s 1-x + 03C8(x),

where 03C8 E H(U). Now,

03C6(x)anbnxn 1-x = m03C6(x)f(x) 1-x + 03C6(x)03B8(x) 1 - x,
03C6(x)anbnxn 1 - x = m03C6(x)f(x) 1 - x + 03C6(x)03B8(x) 1 - x

,

00

where = and 0 E H(U). Consequently
n=0

03C6(x), 

anbnxn - 

ms 1 -x 
+ 03C8(x) + 03C6(x)03B8(x) 1-x

= ms + 03C6(1)03B8(1) 1 - x 
+ 03C9(x)

where 03C9 G H(U) so that anbn is Y-summable to completing
n=0

the proof of the theorem.
Acknowledgement. . The author thanks the referee very much for pointing
out the remarkable connection between the Y-method and the properties of
analytic functions.
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