@article{AMBP_2002__9_1_21_0, author = {Licht, Christian and Michaille, G\'erard}, title = {Global-Local subadditive ergodic theorems and application to homogenization in elasticity}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {21--62}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {9}, number = {1}, year = {2002}, mrnumber = {1914260}, zbl = {01805820}, language = {en}, url = {http://www.numdam.org/item/AMBP_2002__9_1_21_0/} }
TY - JOUR AU - Licht, Christian AU - Michaille, Gérard TI - Global-Local subadditive ergodic theorems and application to homogenization in elasticity JO - Annales mathématiques Blaise Pascal PY - 2002 SP - 21 EP - 62 VL - 9 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - http://www.numdam.org/item/AMBP_2002__9_1_21_0/ LA - en ID - AMBP_2002__9_1_21_0 ER -
%0 Journal Article %A Licht, Christian %A Michaille, Gérard %T Global-Local subadditive ergodic theorems and application to homogenization in elasticity %J Annales mathématiques Blaise Pascal %D 2002 %P 21-62 %V 9 %N 1 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U http://www.numdam.org/item/AMBP_2002__9_1_21_0/ %G en %F AMBP_2002__9_1_21_0
Licht, Christian; Michaille, Gérard. Global-Local subadditive ergodic theorems and application to homogenization in elasticity. Annales mathématiques Blaise Pascal, Tome 9 (2002) no. 1, pp. 21-62. http://www.numdam.org/item/AMBP_2002__9_1_21_0/
[1] Homogénéisation de quelques problèmes en analyse variationnelle, application des théorèmes ergodiques sous-additifs. Thèse, Univerité Montpellier 2, 1996.
.[2] Stochastic homogenization for an integral functional of quasiconvex function with linear growth. Asymptotic Analysis, 15:183-202, 1997. | MR | Zbl
, , and .[3] Ergodic theorems for superadditive processes. J. Reine angew. Math., 323:53-67, 1981. | MR | Zbl
and .[4] Variational Convergence for Functions and Operators. Pitman Advanced Publishing Program, London, 1985. | MR | Zbl
.[5] Epigraphical processes : laws of large numbers for random lsc functions. Séminaire d'Analyse Convexe, 13, 1990. | MR | Zbl
and .[6] Homogenization of elliptic problems in a fiber reinforced structure. Ann. Scuola Norm. Sup. Pisa, Serie IV, XXVI, 4, 1998. | Numdam | MR | Zbl
and .[7] A global method for relaxation. Arch. Rational Mech. Anal., 145:51-98, 1998. | MR | Zbl
, , and .[8] Homogenization of some almost-periodic functional. Rend. Accad. Naz. XL, 103:313-322, 1985. | MR | Zbl
.[9] Direct methods in the Calculus of Variations. Springer-Verlag, Berlin, 1989. | MR | Zbl
.[10] Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator. The Annals of Statistics, 24:1298-1315, 1996. | MR | Zbl
.[11] Ergodic Theorems. Walter de Gruyter, Berlin, New York, 1985. | MR | Zbl
.[12] Une modélisation du comportement d'un joint collé élastique. C.R. Acad. Sci. Paris, 322, Série I:295-300, 1996. | MR | Zbl
and .[13] A modelling of elastic adhesive bonding joints. Mathematical Sciences and Applications, 7:711-740, 1997. | MR | Zbl
and .[14] Non linear stochastic homogenization and ergodic theory. J. Reine angew. Math., 363:27-43, 1986. | EuDML | MR | Zbl
and .[15] Large deviations estimates for epigraphical superadditive processes in stochastic homogenization. prepublication ENS Lyon, 220, 1998.
, , and .[16] Homogenization of non convex integral functionals and cellular elastic material. Arch. Rational Mech. Anal., 7:189-212, 1987. | Zbl
.[17] Integral functionals, normal integrands and measurable selections. Lecture Notes in Mathematics, 543:133-158, 1979. | MR | Zbl
.[18] Ergodic theorems for spatial processes. Z. Wah. Verw. Gebiete, 48:133-158, 1979. | MR | Zbl
.