A spectral construction of a treed domain that is not going-down
Annales mathématiques Blaise Pascal, Tome 9 (2002) no. 1, pp. 1-7.
@article{AMBP_2002__9_1_1_0,
     author = {Dobbs, David E. and Fontana, Marco and Picavet, Gabriel},
     title = {A spectral construction of a treed domain that is not going-down},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {1--7},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {9},
     number = {1},
     year = {2002},
     mrnumber = {1914258},
     zbl = {01805818},
     language = {en},
     url = {http://www.numdam.org/item/AMBP_2002__9_1_1_0/}
}
TY  - JOUR
AU  - Dobbs, David E.
AU  - Fontana, Marco
AU  - Picavet, Gabriel
TI  - A spectral construction of a treed domain that is not going-down
JO  - Annales mathématiques Blaise Pascal
PY  - 2002
SP  - 1
EP  - 7
VL  - 9
IS  - 1
PB  - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
UR  - http://www.numdam.org/item/AMBP_2002__9_1_1_0/
LA  - en
ID  - AMBP_2002__9_1_1_0
ER  - 
%0 Journal Article
%A Dobbs, David E.
%A Fontana, Marco
%A Picavet, Gabriel
%T A spectral construction of a treed domain that is not going-down
%J Annales mathématiques Blaise Pascal
%D 2002
%P 1-7
%V 9
%N 1
%I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
%U http://www.numdam.org/item/AMBP_2002__9_1_1_0/
%G en
%F AMBP_2002__9_1_1_0
Dobbs, David E.; Fontana, Marco; Picavet, Gabriel. A spectral construction of a treed domain that is not going-down. Annales mathématiques Blaise Pascal, Tome 9 (2002) no. 1, pp. 1-7. http://www.numdam.org/item/AMBP_2002__9_1_1_0/

[1] N. Bourbaki. Topologie Générale, Chapitres 1-4. Hermann, Paris, 1971. | MR | Zbl

[2] D.E. Dobbs. On going-down for simple overrings, II. Comm. Algebra, 1:439-458, 1974. | MR | Zbl

[3] D.E. Dobbs. Posets admitting a unique order-compatible topology. Discrete Math., 41:235-240, 1982. | MR | Zbl

[4] D.E. Dobbs. On treed overrings and going-down domains. Rend. Mat., 7:317-322, 1987. | MR | Zbl

[5] D.E. Dobbs and M. Fontana. Universally going-down homomorphisms of commutative rings. J. Algebra, 90:410-429, 1984. | MR | Zbl

[6] D.E. Dobbs, M. Fontana, and I.J. Papick. On certain distinguished spectral sets. Ann. Mat. Pura Appl., 128:227-240, 1980. | MR | Zbl

[7] D.E. Dobbs and I.J. Papick. On going-down for simple overrings, III. Proc. Amer. Math. Soc., 54:35-38, 1976. | MR | Zbl

[8] D.E. Dobbs and I.J. Papick. Going down: a survey. Nieuw Arch. v. Wisk., 26:255-291, 1978. | MR | Zbl

[9] M. Fontana. Topologically defined classes of commutative rings. Ann. Mat. Pura Appl., 123:331-355, 1980. | MR | Zbl

[10] R. Gilmer. Multiplicative Ideal Theory. Dekker, New York, 1972. | MR | Zbl

[11] M. Hochster. Prime ideal structure in commutative rings. Trans. Amer. Math. Soc., 142:43-60, 1969. | MR | Zbl

[12] W.J. Lewis. The spectrum of a ring as a partially ordered set. J. Algebra, 25:419-434, 1973. | MR | Zbl

[13] M. Nagata. Local rings. Wiley/Interscience, New York, 1962. | MR | Zbl