@article{AMBP_2001__8_2_107_0, author = {Petersson, Henrik}, title = {Hypercyclic convolution operators on entire functions of {Hilbert-Schmidt} holomorphy type}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {107--114}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {8}, number = {2}, year = {2001}, mrnumber = {1888820}, zbl = {1024.47003}, language = {en}, url = {http://www.numdam.org/item/AMBP_2001__8_2_107_0/} }
TY - JOUR AU - Petersson, Henrik TI - Hypercyclic convolution operators on entire functions of Hilbert-Schmidt holomorphy type JO - Annales mathématiques Blaise Pascal PY - 2001 SP - 107 EP - 114 VL - 8 IS - 2 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - http://www.numdam.org/item/AMBP_2001__8_2_107_0/ LA - en ID - AMBP_2001__8_2_107_0 ER -
%0 Journal Article %A Petersson, Henrik %T Hypercyclic convolution operators on entire functions of Hilbert-Schmidt holomorphy type %J Annales mathématiques Blaise Pascal %D 2001 %P 107-114 %V 8 %N 2 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U http://www.numdam.org/item/AMBP_2001__8_2_107_0/ %G en %F AMBP_2001__8_2_107_0
Petersson, Henrik. Hypercyclic convolution operators on entire functions of Hilbert-Schmidt holomorphy type. Annales mathématiques Blaise Pascal, Tome 8 (2001) no. 2, pp. 107-114. http://www.numdam.org/item/AMBP_2001__8_2_107_0/
[1] Hypercyclic differentiation operators. Function Spaces (Proc. Conf. Edwardsville, IL, 1998), Amer. Math. Soc. Providence, RI, pages 39-42, 1999. MR 2000b:47019. | MR | Zbl
and .[2] Démonstration d'un théoreme élémentaire sur les fonctions entières. C.R. Acad. Sci. Paris, 189:437-475, 1929. | JFM
.[3] Complex analysis on Infinite Dimensional Spaces. Springer-Verlag, 1999. | MR | Zbl
.[4] Partial differential equations in Fischer-Fock spaces for the Hilbert-Schmidt holomorphy type. Bull. Amer. Soc., 77:725-730, 1971. MR 44#7288. | MR | Zbl
.[5] Universal vectors for operators on spaces of holomorphic functions. Proc. Amer. Math. Soc., No. 2, 100:281-288, 1987. MR 88g:47060. | MR | Zbl
and .[6] Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal., 98:229-269, 1991. MR 92d:47029. | MR | Zbl
and .[7] Universal families and hypercyclic operators. Bull. Amer. Math. Soc. (N.S.). No. 3, 36:345-381, 1999. MR 2000c:47001. | MR | Zbl
.[8] Convolution operators and holomorphic mappings on a Banach space. Sem. Anal. Mod., No. 2, 1969. Univ. Sherbrooke. Québec. | Zbl
.[9] Topological Vector Spaces and Distributions, volume 1. Addison-Wesley, Reading Massachusetts, 1966. | MR | Zbl
.[10] Invariant closed sets for linear operators. Ph.D. thesis, Univ. of Toronto, 1982.
.[11] Sequences of derivatives and normal families. J. Analyse Math., pages 72-87, 1952/53. MR 14:741d. | MR | Zbl
.[12] Existence et approximation des solutions des équations aux dérivativées partielles et des équations de convolution. Ann. Inst. Fourier, 6:271-354, 1955. | EuDML | Numdam | MR | Zbl
.[13] Fischer decompositions of entire functions of Hilbert-Schmidt holomorphy type. preprint and submitted, 2001. | MR | Zbl
.[14] The invariant subspace problem for a class of Banach spaces. ii. Israel J. Math., 63:1-40, 1998. MR 90b:47013. | MR | Zbl
.[15] Linear partial differential equations with constant coefficients. Gordon and Breach, 1966. | MR | Zbl
.