@article{AMBP_1998__5_2_1_0, author = {Aguayo-Garrido, Jos\'e}, title = {Weakly compact operators and the {Dunford-Pettis} property on uniform spaces}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {1--6}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {5}, number = {2}, year = {1998}, mrnumber = {1671703}, zbl = {0924.46020}, language = {en}, url = {http://www.numdam.org/item/AMBP_1998__5_2_1_0/} }
TY - JOUR AU - Aguayo-Garrido, José TI - Weakly compact operators and the Dunford-Pettis property on uniform spaces JO - Annales mathématiques Blaise Pascal PY - 1998 SP - 1 EP - 6 VL - 5 IS - 2 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - http://www.numdam.org/item/AMBP_1998__5_2_1_0/ LA - en ID - AMBP_1998__5_2_1_0 ER -
%0 Journal Article %A Aguayo-Garrido, José %T Weakly compact operators and the Dunford-Pettis property on uniform spaces %J Annales mathématiques Blaise Pascal %D 1998 %P 1-6 %V 5 %N 2 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U http://www.numdam.org/item/AMBP_1998__5_2_1_0/ %G en %F AMBP_1998__5_2_1_0
Aguayo-Garrido, José. Weakly compact operators and the Dunford-Pettis property on uniform spaces. Annales mathématiques Blaise Pascal, Tome 5 (1998) no. 2, pp. 1-6. http://www.numdam.org/item/AMBP_1998__5_2_1_0/
[1] Uniform measures and cosaks spaces, Springer Verlarg, Lectures Notes 843 (1981), 217-246. | MR | Zbl
and ,[2] Measures uniformes, C. R. Acad. Sci., Paris, 277 (1973),105-108. | MR | Zbl
,[3] Dunford-Pettis Property, J. Math. Anal. Appl., 65 (1978), 361-364. | MR | Zbl
,[4] Measures as functional of uniformly continuous functions, Pacific J. Math., 82 (1979), 515-521. | MR | Zbl
,[5] Banach Lattices and Positives Operators, Springer-Verlag, Berlin, HeidelbergNew York, 1974. | MR | Zbl
,[6] Bounded Continuous Functions on a Completely Regular Spaces, Trans. Amer. Math. Soc., V. 168(1972). | MR | Zbl
,[7] Measures on topological spaces, Amer. Math. Soc. Transl., (2) 48(1965), 161-220 | MR | Zbl
,