@article{AMBP_1995__2_1_117_0, author = {De Grande-De Kimpe, N. and Perez-Garcia, C.}, title = {Limited spaces}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {117--129}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {2}, number = {1}, year = {1995}, mrnumber = {1342809}, zbl = {0833.46059}, language = {en}, url = {http://www.numdam.org/item/AMBP_1995__2_1_117_0/} }
TY - JOUR AU - De Grande-De Kimpe, N. AU - Perez-Garcia, C. TI - Limited spaces JO - Annales mathématiques Blaise Pascal PY - 1995 SP - 117 EP - 129 VL - 2 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - http://www.numdam.org/item/AMBP_1995__2_1_117_0/ LA - en ID - AMBP_1995__2_1_117_0 ER -
%0 Journal Article %A De Grande-De Kimpe, N. %A Perez-Garcia, C. %T Limited spaces %J Annales mathématiques Blaise Pascal %D 1995 %P 117-129 %V 2 %N 1 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U http://www.numdam.org/item/AMBP_1995__2_1_117_0/ %G en %F AMBP_1995__2_1_117_0
De Grande-De Kimpe, N.; Perez-Garcia, C. Limited spaces. Annales mathématiques Blaise Pascal, Tome 2 (1995) no. 1, pp. 117-129. http://www.numdam.org/item/AMBP_1995__2_1_117_0/
[1] A question of Valdivia on quasinormable Fréchet spaces, Canad. Math. Bull. 34 (3) (1991), 301-304. | MR | Zbl
,[2] Two theorems of Josefson-Nissenzweig type for Fréchet spaces, Proc. Amer. Math. Soc. 117 (1993), 363-364. | MR | Zbl
, , and ,[3] Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55-58. | MR | Zbl
and ,[4] On spaces of operators between locally K-convex spaces, Proc. Kon. Ned. Akad. v. Wet. A75 (1972), 113-129. | MR | Zbl
,[5] =====, Structure theorems for locally K-convex spaces, Proc. Kon. Ned. Akad. v. Wet. A80 (1977), 11-22. | MR | Zbl
[6] =====, Non-archimedean nuclearity, Groupe d'étude d'analyse ultramétrique, Institut Henri-Pincaré, Paris (1982).
[7] Non-archimedean nuclearity and spaces of continuous functions, Indag. Math. N.S., 2 (1991), 201-206. | MR | Zbl
and ,[8] =====, The non-archimedean space BC(X) with the strict topology, Publicacions Matemátiques 37 (1993).
[9] Non-archimedean GP-spaces, Bulletin of the Belgian Mathematical Society, Simon Stevin 1 (1994), 99-105. | EuDML | MR | Zbl
and ,[10] =====, Two new operator-ideals in non-archimedean Banach spaces, In: p-adic Functional Analysis, N. De Grande-De Kimpe, S. Navarro and W.H. Schikhof, Universidad de Santiago, Chile (1994), 33-43.
[11] Non-archimedean t-frames and FM-spaces, Canad. Math. Bull. 35 (2) (1992), 1-9. | MR | Zbl
, and ,[12] Locally convex spaces, B.G. Teubner, Stuttgart, 1981. | MR | Zbl
,[13] Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Ark. Math. 13 (1975), 78-89. | MR | Zbl
,[14] Non-archimedean Kõthe sequence spaces, Bolletino U.M.I (7), 5-B (1991), 703-725. | MR | Zbl
,[15] On spaces of compact operators in non-archimedean Banach spaces, Canad. Math. Bull. 32 (4) (1989), 450-458. | MR | Zbl
,[16] Topological vector spaces I, Springer-Verlag, Berlin, 1969. | Zbl
,[17] A characterization of Schwartz spaces, Math. Z. 198 (1988), 423-430. | MR | Zbl
,[18] On limitedness in locally convex spaces, Arch. Math. 53 (1989), 65-74. | MR | Zbl
and ,[19] w*-sequential convergence, Israel J. Math 22 (1975), 266-272. | MR | Zbl
,[20] On compactoidity in non-archimedean locally convex spaces with a Schauder basis, Proc. Kon. Ned. Akad. v. Wet. A91 (1988), 85-88. | MR | Zbl
,[21] Compact operators and the Orlicz-Pettis property in p-adic analysis, Report 9101, Department of Mathematics, Catholic University, Nijmegen, The Netherlands (1991), 1-27. | MR
and ,[22] Operators ideals, North-Holland, Amsterdam, 1980. | MR | Zbl
,[23] Locally convex spaces over non-spherically complete valued fields I-II, Bull. Soc. Math. Belgique (ser.B) XXXVIII (1986), 187-224. | MR | Zbl
,[24] =====, The continuous linear image of a p-adic compactoid, Proc. Kon. Ned. Akad. v. Wet. A92 (1989), 119-123. | MR | Zbl
[25] Non-archimedean Functional Analysis, Marcel Dekker, New York, 1978. | MR | Zbl
,