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CONTINUED FRACTIONS FOR FINITE SUMS

Ann Verdoodt

Ann. Math. Blaise Pascal, Vol. 1, N° 2, 1994, pp. 71 - 84

Abstract

Our aim in this paper is to construct continued fractions for sums of the type
n 

, 

n 
,

L bi z‘~’~ or L bi where ( bn ) is a sequence such that bn is different
i=0 i=0 °

from zero if n is different from zero, and c(n) is an element of N. .

Resume

Le but est de construire des fractions continues pour des sommes du type
n 

, 

n 
, 

‘

L bi zc(i) or L b; /zc(i) , où ( bn ) est une suite telle que bn est different de
i=0 i==0
zero pour n different de zero, et c(n) est un element de N . .

1. Introduction

[ a0, a1, a2 , .... ] denotes the continued fraction a0 + 1 1,

a I + a2 + ....

and [ a~, al, ..., an ] denotes ao + 1 1 .

al+

a2 + ... an-1 + 1 an

The ai ’s are called the partial quotients (or simply the quotients ) , and [a0, a1, ..., an ] is

called a finite continued fraction.

n

Our aim in this paper is to construct continued fractions for sums of the type ~ bi z‘~’~ or
i=0

n

~. where c(i) is an element of N .
i=0 ’
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’ 

n 
’

In section 2, we find continued fractions for Suite sums of the type ~, bi z* (c(i) = i)
’ ’ 

’ 
’ 

i=0 .

n

or ~ b; z~ (c(i) = q~), where (bn) is a sequence such that bn is different from zero if n is
i=0

different from zero, and where q is a natural number different from zero and one. ..
n

Therefore , we start by giving a continued fraction for the sum V bi T3’, where bi is
i=0 

’

different from zero for all i different from zero ( bi is a constant in T ) . This can be found in

theorem 1.

If we replace b; by b; z’ in theorem 1, and we put T equal to one, we find a continued

.. n.’ . ’

fraction for ~ b, z’ (theorem 2), and if we replace b~ by bi z~ in theorem 1, and we put
i=0

n

T equal to one, we find a continued fraction for ~ bi z~ (theorem 3 ) (q is a natural
i=0

number different from zero and one). 
’ . ’ ’

’" ’ ’ 

n

In section 3 we find continued fractions for finite sums of the type V -~ , for some
i=0

sequences (b~) and (c(n)), where c(n) is a natural number.

In theorem 4, we find a result for c(i) equal to 2i (for all i).
v

Finally , in theorem 5 , we give a continued fraction for ~ where c(0) equals zero ,
i=0

The results in this paper are extensions of results that can be found in [2], [3] and [4]. .

Acknowledgement : I thank professor Van Hamme for the help and the advice he gave me

during the preparation of this paper. 
’ ’ ° ’
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n

2. Continued fractions for sums of the type ~. b; z~
i=0

All the proofs in sections 2 and 3 can be given with the aid of the following simple lemma :

Lemma

Leti) p0 = a0 , q0 = 1 , p1 = a1 a0 + 1 , q1 = a1 ,

pn = anpn-1 + pn-2, qn = an qn-1 + qn-2 (n ~ 2),

then we have

ii) pn qn = [ a0, a1, ..., an ]

iii) (n ~ 1)

iv) qn qn-1 = [an, an-1, ..., a1] (n ~ 1)

These well-known results can e.g. be found in [1]. 
_ _ 

,

n .

First we give a continued fraction for the sum 03A3bi T3i, where bi is different from zero for
’ 

i=0

all i different from zero ( bi is a constant in T): .

Theorem 1

Let (bn) be a sequence such that bn ~ 0 for all n > 0. .. ,

Define a sequence ( xn) by putting Xo = [ boT ], Xt = [ boT, b~T-3] , and if

xn = [ a0, a1, ..., a2n-1] then setting xn+1 = [ a0, a1, ..., a2n-1, - b2n/bn+1T-3n, -a2n-1, ..., -a1 ].

n 
.

Then xn = 03A3 bi T3i for all n e N .

i=C

Proof .

For n = 0 the theorem clearly holds.
n

If n is at least one, we prove that Xn = ~ bi T~ and = b~ T-3" . ....
’ 

;==0

We prove this by induction. For n = 1 the assertion holds.
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Suppose it holds for 1  n _ j . We then prove the assertion for n =j+l.

xj+1 = [a0, a1, ...,a2j+1-1].

= [ a0, a1, ..., a2j-1, a2j, - [a2j-1, ..., a1 ]] (using the definition of a continued fraction )
= -q2j-1 p2j + q2j-2 p2j-1 

(by i), ii) and iv) of the lemma)-q2j-1 q2j + q2j-2 q2j- 1

= -q2j-1 (a2jp2j-1 + p2j-2 ) + q2j-2 p2j-1
-q2j-1 (a2jq2j-1 + + q2j-2 q2j-1 ( by i) of the lemma )

now we have p2j-1 q2j-2 - p2j-2 q2j-1 = (-1)2j-2 =1 ( by iii) of the lemma )

= -B~L- . 1 
? 

""

q2j-1 1 a2j(q2j-1)2

now a2j(q2j-1)2 = - T-3j b2j bj+1 (b-1j T-3j)2 = - T-3j+1 b-1j+1

= [ a0, a1, ..., a2j+1 ] + T3j+1 bj+1 = 03A3 bi T3i (by the induction hypothesis)
i=0

We still have to prove T’3~+I~ . Let k be at least one. ’

Then pk and qk are polynomials in U = T-1 . deg qk > deg qk-1 , and the term with the highest

degree in qk is given by ak . ak-1 ..... a1 . This follows from i) : .. .. .

If r is a polynomial in U that divides pk and q , then r must be a constant in U . This

immediately follows from iii). If r divides pjc and qk, then r divides (-1)k-~. So r must be a constant.

’+1 1

Since 03A3 bi T3i = [ a0, a1, ...,a2j+1-1] = we have

p2j+1-1 
j+1 biT3iT-3j+1 j+1 

bi U3J+1-3i 
bj+1+03A3 bi U3j+1-3i03A3 = 

03A3 = 
q2j+1-1 

i=0 
T-3j+1 

i=0 
U3j+1 U3j+1

and we conclude that q2j+1-1 = C U3j+1 = C T-3j+1 where C is a constant.

By the previous remark, we have that

q2j+1-1 = C T-3j+1 = C U3j+1 = a1 . a2 . ... . a2j+1-1 i .v

= (-1)~-i( al . a2 .....a~j;l )2. a2j = - ( q~i-~ )2 . a~; .

( by the induction hypothesis , since = b-1j T-3j = a1 . a2 . ... . a2j-1)
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, 
. , by T.~i+1 1 .

= - (b-1j T-3i )2.(-T-3j bj+1) = bj+1 which we wanted to prove. 

We immediately have the following

Proposition

Let then

xn+1 = [a0, a1, ..., a2n-1, a2n, -a2n-1, ..., -a1 ].

If n is at least two, then the continued fraction of xn consists only of the partial quotients

a20-1 , a2n-2 , -a2n-z, ... , al ,-al and a~ .

Then the distribution of the partial quotients for Xn is as follows ( n > 2 ) :

partial quotient

a2n-1 1 a2n-2 -a2n-2 a2n-3 -a2n-3 ... a2i -a2i ... a1 -a1 a0

number of occurrences

1 1 1 2 2 ... 2n-i-2 2n--2 ... 2n-2 2n-2 1

Proof

We give a proof by induction on n .

x2 = [ a0, a1, a2, a3] = [ a0, a1, a2, -a1 ], so the quotients a0, a1, -a1, a2, occur once .

So for n equal to 2 the assertion holds . Suppose it holds for 2 _ n _ j .Then we prove it holds

for n = j+1 . Since xj+1 = [ a0, a1, ..., a2j+1-1 ] = [ a0, a1, ..., a2j-1 , a2j , -a2j-1, ..., -a1 ] , it is

clear that the partial quotients a2j and a0 occur only once.

In the partial quotients ai, ..., we have

partial quotient

a2j-1 a2j-2 -a2j-2 a2j-3 -a2j-3 ... a2i -a2i ... a1 -a1

number of occurrences

1 1 1 2 2 ... 2j-i-2 2j+2 ... 2j-2 2j-2

so in the partial quotients -a1, ..., -a2j-1 we have

partial quotient ..

- a2j-1 a2j-2 -a2j-2 a2j-3 -a2j-3 ... a2i -a2i ... a1 -a1

number of occurrences

1 1 1 2 2 ... 2j-i-2 2j-i-2 ... 2j-2 2j-2
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This proves the proposition. , ...

Using theorem 1, we immediately have the following:

Theorem 2

Let (b~) be a sequence such that bn is different from zero for all n different from zero .
Define a sequence ( xn ) by putting x0 = [ b0 ], x1 == [ b0, b-11z-1] and if xn =[ a0, a1, ..., a2n-1 ]

then setting xn+1 = [ a0, a1, .... a2n-1, - b2n / zn-1, -a2n-1, ..., -a1 ],
n

then x~ = ~ b; z’ for all n 6 N.
i=0 .. 

" 

. 

’ ’

Proof 
.

Replace bi by b; z’ in theorem 1, and put T equal to one .

Some examples

n

1) Let xn = 03A3x1 (i.e, bi = 1 for all i ) . Then a0 = 1 , a1 = x-1 and
i==0

n 
;

2) Let xn = 03A3 X1 i! (i.e. 
i=0 

~° 
~-~~ 

Then ao = 1 , ai = x-~ and a2n = - ~"- x~ (n ~ 1)

3) Let xn = 03A3 (-1)i x2i (2i)! (i.e. lim Xn=cosx).
i==0 

° 

n-~~

Then ao = 1 , a, == -2x-2 and a~n = x2n.2 (~ ~ i)

~-~ / l~x~~~ ~ ~ 4) Let xn = 03A3 (-1)i x2i+1 (2i+1)! (i.e. lim xn = sin x).
i=0 n~~

~=-6x-3 and a2n=(-l)~~~~ 
In an analogous way as in the previous theorem, we have



77Continued fractions for finite sums

Theorem 3

. Let ( bn ) be a sequence such that bn is different from zero for all n different from zero, and let q

be a natural number different from zero and one. .

Define a sequence ( xn ) by putting x0 = [b0 z ], x1 = [ b0 z, b-11 z-q] and if xn = [ a0, a1, ..., a2n-1 ]

then setting xn+1 = [ a0, a1, ..., -a2n-1, ..., -a1 ].
n

Then Xn= 03A3 bi zq’ for all n 

i=0

Proof

Replace b; by b; zq’ in theorem 1, and put T equal to one. .

An Example

In [4] we find the following :

Let Fqbe the finite field of cardinality q . Let A = K = Fq(X), K~ = Fq((1/X))

and let Q be the completion of an algebraic closure of Koo. Then A , K , Koo, Q are well-

known analogous of Z, Q , R, C respectively .

Let [i] = X~‘ - X ( the symbol [i] does not have the same meaning as in Xo = [aaJ ) . This is just

the product of monic irreducible elements of A of degree dividing i . .

Let D0 = 1, Di = [i] Dqi-1 if i > 0. This is the product of monic elements of A of degree i.
~

Let us introduce the following function : e(Y) = 03A3 Yqi Di (Y ~ 03A9).
i=0

Then Thakur gives the following theorem :

Define a sequence xn by setting x = [ 0, Y-qD1] and if xn = [ ao, at, ..., J then setting

n

xn+1 = [ a0, a1, ..., a2n-1 , -Y-qn(q-2)Dn+1/D2n, -a2n-1, ..., -a1 ], then xn = 03A3 Yq1 Di for all n ~ N
i=1

In particular, e(Y) = Y + lim xn .
n-~~

If we put b; = if i > 0, and bo = 0 in theorem 3 , then we find the result of Thakur.
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n

’ 

. 

3. Continued fractions for sums of the type 03A3 bi zc(i)
i=0

In this section, b; is a constant in z , and c(i) is a natural number. Our first theorem in this
n

section gives the continued fraction for the sum 03A3 bi z2i (i.e. c(i) = 2i for all i ) :i=0
Theorem 4 -

Let ( bn ) be a sequence such that bn is different from zero for all n . A continued fraction for
n

the sum 03A3 bi z2i can be given as follows :z- 
g

i=0

Put x0 = [ 0, z/b0] , x1 = [ 0, z b0 - b1 b20 , b30z b21 + b20 b1 ] and if xk = [ a0, a1, ..., a2k ] then setting

xk+1 = [ a0, a1, ..., a2k + 03B3-2k+1 a2k - 03B3-1k+1 , a2k+2,...,a2k+1] where 03B3k+1 = bk+1 (b0)2k+1 (b1)2k+1 ,

a2k+i = 03B32k+1a2k-i +1 if i is even, and a2k+i = 03B3-2k+1 a2k-i +1 if i is odd ( 2 ~ i ~ 2k) ,
k

then xk = 
03A3 bi z2i for all k ~ N .
i=0

Proof

, n

If we have Xn = [ a0, a1, ..., a2n ] = p2n q2n, we show by induction that Xn equals 03A3 bi z2i , and
i=0

that q2n equals z2n b2n0 b2n1 . For n = 0, 1 this follows by an easy calculation.

Suppose the assertion holds for 0 ~ n ~ k . Then we show it holds for n = k+1.

k+l

The first part of the proof, i.e. showing that xk+! _ x, is analogous to the first part of
i==0

the proof of [2] , theorem 1.

xk+1 = [ a0, a1, ..., a2k-1, a2k + 03B3k+1, 03B3-2k+1 a2k - 03B3-1k+1 ,a2k+2,...,a2k+1]

= [ a0, a1, ..., a2k-1,a2k + 03B3k+1, 03B3-2k+1 a2k - 03B3-1k+1 ,03B32k+1 [a2k-1,a2k-2,a2k-3, ... ,a2,a1 ]
( using the definition of a continued fraction )

Now if [ a0, a1, ..., a2k ] = p2k q2k , then [ a0, a1, ..., a2k-1] = p2k-1 q2k-1 and so
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[ a0, a1, ..., a2k-1,a2k + 03B3k+1] = (a2k + 03B3k+1)p2k-1+p2k-2 (a2k + 03B3k+1)q2k-1+q2k-2 = p2k + 03B3k+1p2k-1 q2k + 03B3k+1q2k-1

( by i) and ii) of the lemma )

Then [ a0, a1, ..., a2k + 03B3k+1, 03B3-2k+1 a2k - 03B3-1k+1 ] = (03B3+2k+1 a2k - 03B3-1k+1)(p2k + 03B3k+1p2k-1)+p2k-1 (03B3-2k+1 a2k - 03B3-1k+1)(q2k + 03B3k+1q2k-1)+q2k-1 03B3-2k+1 a2k - 03B3-1k+1)(q2k + 03B3k+1q2k-1)+q2k-1

( by i) and ii) of the lemma )

And so

[ ao, a!, ..., ,03B32k+1 [a2k-1,a2k-2,a2k-3, ... ,a2,a1] ]

= 
a2k q2k-1 p2k + 03B3k+1 a2k q2k-1 - 03B3k+1 q2k-1 p2k + q2k-2 p2k + 03B3k+1 q2k-2 p2k -1

a2k q2k-1 q2k + 03B3k+1 a2k q2k-1 q2k-1 - 03B3k+1 q2k-1 q2k + q2k-2 q2k + 03B3k+1 q2k-2 q2k-1

( by iv) of the lemma )

If we use the following equalities

(pn - pn-2)qn-1 = anpn-1qn-1 (qn - qn-2)pn = anpnqn-1

(qn - qn-2)qn = anqnqn-1 (qn - qn-2)qn-1 = anq2n-1 ( by i) of the lemma)

then we find that the numerator equals q2k p2k + 03B3k+1 ( by iii) of the lemma) and the

denominator equals (q~k)2 .
So we conclude

k k+ 1

xk+1 = 
p2k q2k 

+ 
03B3k+1 (q2k)2 = 03A3 bi z2i 

+ (b1)2k+1 z2k+1(b0)2k+1 bk+1 
(b0)2k+1 (b1)2k+1 = 03A3 bi z2i

We still have to show q2k+1 = z2k+1 (b0)2k+1(bi) ,

In the same way as in the proof of theorem 1, we find that q2k+i = C z2k+! where C is a constant.

Let a; be the coefficient of z in a ;.

Then for C , the coefficient of z2k+1 in q2k+1, we have

C - 03B1103B12 ... 03B12k-103B12k(03B3-2k+103B12k)(03B32k+103B12k-1)(03B3-2k+103B12k-2)(03B32k+103B12k-3) ... (03B32k+103B11)

= ( coefficient of in q~k )2 = ~--~ _ ~- °~
and we conclude q2k+1 = z2k+1 (b0)2k+1 (b1)2k+11. This finishes the proof.
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Some examples , ; 

,,_ _ 

_

1) If we put b; equal to one for all i, and z is an integer at least 3, then we find 
’

theorem 1 of [2]:
v

Let B(u,v) . = ~ ~! = ~ + ~ + ~ + ... + ~ (u ~ 3 , u an integer ) ..;...
’=0 .

Then B(u,0) = [0,u], = [0,u-l,u+l], and a,,..., a.] = Bm
then B(u,v+1) = [a0, a1, ..., an-1, an+1, an-1, an-1, an-2, ... , a2, a1].

2) Put bi = 03BBi. Then we have xo = [ 0, u], x, = [ 0, u - 03BB, u 03BB2 + 1 03BB] and if xk = [ a0, a1, ..., a2k ],
....’ .~ ~ ’ A .’.;.. 

’

then xk+1 = [ a0, a1, ..., a2k-1 , a2k + 03B3-1k+1 ,a2k+2,...,a2k+1] , where = 03BBk+1-2k+1,

a2k+i = 03B32k+1a2k-i +1 if i is even , and a2k+i = 03B3-2k+1 a2k-i +1 if i is odd (2 ~ i ~ 2k) ,

V ~ 
"

then Xk = 03A3 03BB1 u2i for all k N.

i=0
For some some sequences ( ,bn ) and (c(n)), we can give a continued fraction for the sum
v

~ ~ as follows:
i=0

Theorem 5 ..

Let ( bn ) be a sequence such that bn ~ 0 for all n, and b0 ~ 0, 1, -1, and 1/2 , and let (c(n))

be a sequence such that c(0) = 0, and c(n+l) - 2c(n) ~ 0, 

and if xv = [a0, a1, ..., an ] = pn qn = p(v) q(v),
then setting xv+1 = [ a0, a1, ...,an, 03B1v zd(v)-1, 1, an-1 , ..., a2, a1],

where d(v) = c(v+1) - 2c(v), 03B1v=b2 bv+1 if v ~ 1 and 03B10 = b40 b1,
D; .

v *

then xv = 03A3 bi zc(i) for all v in N , and q(v) = zc(v) bv if v ~ 1, q(0)=1 (b0)2i=0 . ~ ° " ’ ’
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Remarks

1) The special form ofbo,Xo=bo=[-b5,.-- 1, ~- + 1 ] = [ ao, a~ a~] is needed since in the
expression [ ao, ..., an ] = ~ the integer n must be even .

2) The value of n is n = 2~ +2~+2 (this can be easily seen by induction)

3) The only partial quotients that appear are -b20, 1 b0 -1, 1 b0 + 1, 1 b0 , 1 b0 - 2, 03B1v zd(v) -1, and 1,
so bo must be different from 0 , 1, -1, and 1/2.

Proof

For v equal to 0,1 or 2 we find this result by an easy computation .

We prove the theorem by induction on v.
v ...

Suppose have ~ ~ = [ ao, a~ ..~ an ] = ~ = ~ with %) = ~y-
i==0

v+1 i

Then we show that. = [ ao, ...,an, Oy z~) -1, 1, an -1, an-i,..., a~, ~i~ = ~ ~
i==0

~ 

’

v+l i

The first part of the proof, i.e. showing that xv+1 = 03A3 bi zc(i) , is analogous to the first part of
i=0

the proof of the theorem in [3].

Now , by repeated use of i) an it) of the lemma, we have

[~a.,...,a~~-l]=~~-;~~"" ; ;(03B1vzd(v)-1)qn+qn-1
03B1v zd(v) pn + pn- 1[a0, a1, ..., an,03B1v zd(v)-1, 1] = ;03B1vzd(v)qn + qn-1

[a0, a1, ..., an,03B1v zd(v)-1, 1, an-1] = an03B1v zd(v) pn + anpn-1 - pn ’

xv+1 = [ a0, a1, ..., an,03B1v zd(v) -1, 1, an -1,an-1, ..., a1]

= [ ao, a),.... 1, a.,-l,[a..t,..., a,]]

( using the definition of a continued fraction )
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= 
anqn-1 03B1v zd(v) pn + qn-203B1v zd(v) pn + anqn-1pn-1 - qn-1pn + qn-2pn-1

anqn-103B1v zd(v) qn + qn-203B1v zd(v) qn + an(qn-1)2 - qn-1qn + qn-2qn-1

( by i) , ii) and iv) of the lemma)

= pn qn + 
1 (qn)203B1v 2d(v) 

( by i) and iii) of the lemma since , is even)

So xv+ 1 = pn qn + 1 (qn)203B1v zd(v) = 03A3 bi zc(i) + (bv)2bv+1 z2c(v)(bv)2 zd(v) since qn = q(v) = zc(v) bv , 03B1v = (by)2 bv+1i=0
v+1

j b;
= 

03A3 zc(i)
i~ 

., 
.

We still have to prove q(v+1) = q2n+2 = zc(v+1) bv+1 , and since zc(v+1) bv+1 = (qn)203B1v zd(v), it suffices

to prove that q2n+2 = (qn)2 03B1v zd(v).

We can not use the same trick here as in the proofs of theorems 1 and 4 , since we do not

necessarily have deg qk+1 > deg qk ( qk as a polynomial in z )

We already know that qn+1 = + qn+2 = 03B1v zd(v) qn + qn-1

Repeated use of i) of the lemma gives .

qn+3 = q(n+2)+1 = an03B1v zd(v) qn + anqn-1 - qn = r103B1v zd(v) qn - qn-2 ( where we put an = r1)

qn+4 = q(n+2)+2 = (an+1an+1)03B1v zd(v) qn - an-1qn-2 + qn+1 = r203B1v zd(v) qn + qn-3

( where we put an-1an+1 = ]’r2 )

qn+5 = q(n+2)+3 = (an-2(an-1(an-1an+ 1) + an)03B1v zd(v) qn + an-2qn-3 - qn-2

= r303B1v Zd(v) qn - qn-4 (where we put an-2(an-1an+1) + an = r3 )

etc...

Continuing this way, we find

q(n+2)+k = rk03B1v zd(v) qn + (-1)k qn-(k+1) , q(n+2)+k+1= rk+103B1v zd(v) qn + (-1)k+1 qn-(k+2)

Then q(n+1)+k+2 = (an-(k+1)rk+1+rk)03B1v zd(v) qn + (-1)k+1 an-(k+1)qn+k-2 + (-1)k qn-k-1

= rk+203B1v zd(v) qn + (-1 )k+2 qn-(k+3)

and finally we have q2n = q(n+1)+n-2 = rn-203B1v zd(v) qn + qn-(n-1)
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q2n+1 = q(n+2)+n-1 = rn-103B1v zd(v)qn - qn-n ( we remark that n is even)

and SO q2n+2 = q(n+2)+n = rn03B1v zd(v)qn - a1q0 + q1 = rn03B1v zd(v) qn

So if we want to show that qz~+~ = (qn)~ ocy we must show that rn equals qn .

For the sequence ( rn ) we have r0 = 1, r1 = an , r2 = an-1an + 1 = an-1r1 + r0,

r3 = an-2(an-1an+1) + an = an-2r2 + r1 , and continuing this way we find rk+2 = an-(k+1)rk+1 + rk.

From this it follows that [ 1, an, ..., a1] = [ 1, c1, ..., cn] = tn rn ( we put ai = cn+1-i )
with t0 = c0, r0 = 1, t1 = c1 c0 + 1, r1 = c1 ,

rn = cn rn-1 + rn-2 ( n ~ 2 ),

Now n can be written as n = 2k+2 ( see remark 2 following theorem 5 ) and so

[ ap, at...., an] _ [ a0, at...., 1, 

and then [ 1, a1, ..., ak,03B1v-1zd(v-1) -1, 1, ak-1,ak+1, ..., a1] = [ 1, a1, ..., an] = pn qn

where the qi (0 ~ i ~ n ) stay the same since q; does not depend on ao.

So [ 1, a , ..., ..., at] = [ 1, an, ..., at] 

and we conclude qF = r; for Q _ i  k-1.

We have to show qn = rn. Now ( by repeated use of i) of the lemma)

qk = akqk-1 + qk-2 , rk = qk - qk-1;

qk+1 = qk - qk + qk-1, rk+1 = qk ;

qk+2 = qk + qk-1, rk+2 = 03B1v-1zd(v-1) qk - qk-1;

qk+3 = q(k+2)+1 = 03B1v-1zd(v-1) akqk + akqk-1 - qk = ak03B1v-1zd(v-1) qk - qk-2

= qk - qk_2 , where we put ak = R 1,

rk+3 = r(k+2)+1 = ak03B1v-1zd(v-1) qk + qk-2 = R103B1v-1zd(v-1) qk + qk-2 ;

qk+4 = q(k+2)+2 = (ak-1ak+1)03B1v-1zd(v-1) qk - ak-1qk-2 + qk-1

= qk-3

= R203B1v-1zd(v-1) qk + qk-3 where we put (ak-1ak+1) = R2,
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rk+4 = r(k+2)+2 = (ak-1ak+1)03B1v-1zd(v-1)qk + ak-1qk-2 - qk-1

= (ak-1ak+1)03B1v-1zd(v-1) qk - qk-3 = R203B1v+1zd(v-1)qk - qk - qk-3

If we continue this way, we find q~ + (-l)i and

r(k-~ = (-1)* qk-(~) (0 ~ i ~ k Ro = 1), and so we have

q2k = q(k+2)+k-2 = Rk-203B1v-1zd(v-1)qk + qk-(k-1), q2k+1 = q(k+1)+k-1 = Rk-103B1v-1zd(v-1)qk - qk-k ( we

remark that k is even) and thus q2k+2 = q(k+1)+k = Rk03B1v-1zd(v-1) qk - a1q0 + q1 = Rk03B1v-1zd(v-1) qk,

and r2k = r(k+2)+k-2 = Rk-203B1v-1zd(v-1)qk - qk-(k-1) , r2k+1 = r(k+2)+k-1 = Rk-103B1v-1zd(v-1) qk + qk-k and

thus r2k+2 = r(k+2)+k = Rk03B1v-1zd(v-1)qk + a1q0 - q1 = Rk03B1v-1zd(v-1)qk ,

So we conclude that q2k+2 = qn equals r2k+2 = rn . This finishes the proof.

The case bi equal to one, where z is an integer at least two, is studied by Shallit ( [3] ) :
Let (c(k)) be a sequence of positive integers such that c(v+l) > 2c(v) for all v ~ v’, where v’
is a non-negative integer. Let d(v)= c(v+l) - 2c(v): Define S(u,v) as follows :

v . 

,

S(u,v) = ~ u~), where u is an integer, u ~ 2 . Then Shallit proved the following theorem :
i==0

Suppose v ~ v’. If S(u,v) = [ ao, ~. -~ an] and n is even, then

S(u,v+l) = [ a0, a1, ..., an, ud(v)-1,1, an-1, an-1, an-2, ... , a2, a1].
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