ANN VERDOODT Continued fractions for finite sums

Annales mathématiques Blaise Pascal, tome 1, nº 2 (1994), p. 71-84 http://www.numdam.org/item?id=AMBP 1994 1 2 71 0>

© Annales mathématiques Blaise Pascal, 1994, tous droits réservés.

L'accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http:// math.univ-bpclermont.fr/ambp/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Math. Blaise Pascal, Vol. 1, N° 2, 1994, pp. 71 - 84

CONTINUED FRACTIONS FOR FINITE SUMS

Ann Verdoodt

Abstract

Our aim in this paper is to construct continued fractions for sums of the type $\sum_{i=0}^{n} b_i z^{c(i)}$ or $\sum_{i=0}^{n} b_i/z^{c(i)}$, where (b_n) is a sequence such that b_n is different from zero if n is different from zero , and c(n) is an element of N.

Résumé

Le but est de construire des fractions continues pour des sommes du type $\sum_{i=0}^{n} b_i \ z^{c(i)} \text{ or } \sum_{i=0}^{n} b_i / z^{c(i)} \text{ , où } (b_n) \text{ est une suite telle que } b_n \text{ est différent de zéro pour n différent de zéro , et c(n) est un élément de N.$

1. Introduction

 $[a_{0}, a_{1}, a_{2},] \text{ denotes the continued fraction } a_{0} + \frac{1}{a_{1} + \frac{1}{a_{2} + ...}},$ and $[a_{0}, a_{1}, ..., a_{n}]$ denotes $a_{0} + \frac{1}{a_{1} + \frac{1}{a_{2} + ...}}$. $\frac{1}{a_{2} + ...} a_{n-1} + \frac{1}{a_{n}}$

The a_i 's are called the partial quotients (or simply the quotients), and [$a_0, a_1, ..., a_n$] is called a finite continued fraction.

Our aim in this paper is to construct continued fractions for sums of the type $\sum_{i=0}^{n} b_i z^{c(i)}$ or

$$\sum_{i=0}^{n} b_i / z^{c(i)} \text{ , where } c(i) \text{ is an element of } \mathbb{N} \text{ .}$$

In section 2, we find continued fractions for finite sums of the type $\sum_{i=0}^{n} b_i z^i$ (c(i) = i)

or $\sum_{i=0}^{n} b_i z^{q^i}$ (c(i) = qⁱ), where (b_n) is a sequence such that b_n is different from zero if n is different from zero, and where q is a natural number different from zero and one.

Therefore, we start by giving a continued fraction for the sum $\sum_{i=0}^{n} b_i T^{3i}$, where b_i is different from zero for all i different from zero (b_i is a constant in T). This can be found in theorem 1.

If we replace b_i by $b_i z^i$ in theorem 1, and we put T equal to one, we find a continued

fraction for $\sum_{i=0}^{n} b_i z^i$ (theorem 2), and if we replace b_i by $b_i z^{q^i}$ in theorem 1, and we put T equal to one, we find a continued fraction for $\sum_{i=0}^{n} b_i z^{q^i}$ (theorem 3) (q is a natural number different from zero and one).

In section 3 we find continued fractions for finite sums of the type $\sum_{i=0}^{n} \frac{b_i}{z^{c(i)}}$, for some sequences (b_n) and (c(n)), where c(n) is a natural number. In theorem 4, we find a result for c(i) equal to 2^i (for all i). Finally, in theorem 5, we give a continued fraction for $\sum_{i=0}^{v} \frac{b_i}{z^{c(i)}}$, where c(0) equals zero,

and $c(n+1) - 2c(n) \ge 0$.

The results in this paper are extensions of results that can be found in [2], [3] and [4].

Acknowledgement : I thank professor Van Hamme for the help and the advice he gave me during the preparation of this paper .

 $\sim 1^{-1}$

2. Continued fractions for sums of the type
$$\sum_{i=0}^{n} b_i z^i$$

All the proofs in sections 2 and 3 can be given with the aid of the following simple lemma :

Lemma

Let i)
$$p_0 = a_0$$
, $q_0 = 1$, $p_1 = a_1 a_0 + 1$, $q_1 = a_1$,
 $p_n = a_n p_{n-1} + p_{n-2}$, $q_n = a_n q_{n-1} + q_{n-2}$ ($n \ge 2$),

then we have

ii)
$$\frac{p_n}{q_n} = [a_0, a_1, ..., a_n]$$

- iii) $p_n q_{n-1} p_{n-1} q_n = (-1)^{n-1} (n \ge 1)$
- iv) $\frac{q_n}{q_{n-1}} = [a_n, a_{n-1}, ..., a_l] (n \ge 1)$

These well-known results can e.g. be found in [1].

First we give a continued fraction for the sum $\sum_{i=0}^{n} b_i T^{3i}$, where b_i is different from zero for all i different from zero (b_i is a constant in T):

Theorem 1

Let (b_n) be a sequence such that $b_n \neq 0$ for all n > 0.

Define a sequence (x_n) by putting x_0 = [$b_0\,T$] , x_1 = [$b_0\,T,\,b_1^{-1}T^{-3}]\,$, and if

 $x_n = [a_0, a_1, ..., a_{2^{n-1}}]$ then setting $x_{n+1} = [a_0, a_1, ..., a_{2^{n-1}}, -b_n^2/b_{n+1}T^{-3^n}, -a_{2^{n-1}}, ..., -a_1]$.

Then
$$x_n = \sum_{i=0}^n b_i T^{3i}$$
 for all $n \in \mathbb{N}$

Proof

For n = 0 the theorem clearly holds.

If n is at least one, we prove that
$$x_n = \sum_{i=0}^n b_i T^{3i}$$
 and $q_{2^{n-1}} = b_n^{-1} T^{-3^n}$.

We prove this by induction . For n = 1 the assertion holds .

Suppose it holds for $1 \le n \le j$. We then prove the assertion for n = j+1.

 $\mathbf{x}_{i+1} = [a_0, a_1, \dots, a_{2j+1}]$ $[a_0, a_1, ..., a_{2j-1}, a_{2j}, - [a_{2j-1}, ..., a_1]]$ = (using the definition of a continued fraction) $\frac{-q_{2j-1}p_{2j}+q_{2j-2}p_{2j-1}}{-q_{2j-1}q_{2j}+q_{2j-2}q_{2j-1}}$ = (by i), ii) and iv) of the lemma) $\frac{-q_{2j-1}(a_{2j}p_{2j-1}+p_{2j-2})+q_{2j-2}p_{2j-1}}{-q_{2j-1}(a_{2j}q_{2j-1}+q_{2j-2})+q_{2j-2}q_{2j-1}}$ = (by i) of the lemma) now we have $p_{2j-1} q_{2j-2} - p_{2j-2} q_{2j-1} = (-1)^{2j-2} = 1$ (by iii) of the lemma) $\frac{p_{2j-1}}{q_{2j-1}} - \frac{1}{a_{2j}(q_{2j-1})^2}$ = now $a_{2i}(q_{2i-1})^2 = -T^{-3i} \frac{b_i^2}{b_{i+1}} (b_j^{-1} T^{-3i})^2 = -T^{-3i+1} b_{j+1}^{-1}$ $[a_0, a_1, ..., a_{2j-1}] + T^{3j+1} b_{j+1} = \sum_{i=0}^{j+1} b_i T^{3i}$ = (by the induction hypothesis)

We still have to prove $q_{2j+1,1} = b_{j+1}^{-1} T^{-3(j+1)}$. Let k be at least one. Then p_k and q_k are polynomials in $U = T^{-1}$. deg $q_k > deg q_{k-1}$, and the term with the highest

degree in q_k is given by $a_k \cdot a_{k-1} \cdot \dots \cdot a_1$. This follows from i).

If r is a polynomial in U that divides p_k and q_k , then r must be a constant in U. This immediately follows from iii). If r divides p_k and q_k , then r divides $(-1)^{k-1}$. So r must be a constant.

Since
$$\sum_{i=0}^{j+1} b_i T^{3i} = [a_0, a_1, ..., a_{2j+1,-1}] = \frac{p_{2j+1,-1}}{q_{2j+1,-1}}$$
, we have

$$\frac{p_{2j+1,-1}}{q_{2j+1,-1}} = \sum_{i=0}^{j+1} \frac{b_i T^{3i} T^{3j+1}}{T^{3j+1}} = \sum_{i=0}^{j+1} \frac{b_i U^{3j+1,-3i}}{U^{3j+1}} = \frac{b_{j+1} + \sum_{i=0}^{j} b_i U^{3j+1,-3i}}{U^{3j+1}}$$

and we conclude that $q_{2j+1,1} = C U^{3j+1} = C T^{-3j+1}$ where C is a constant .

By the previous remark, we have that

$$q_{2j+1-1} = C T^{-3j+1} = C U^{3j+1} = a_1 \cdot a_2 \cdot \dots \cdot a_{2j+1-1}$$

$$= (-1)^{2j-1}(a_1, a_2, \dots, a_{2j+1})^2, a_{2j} = -(q_{2j+1})^2, a_{2j}$$

(by the induction hypothesis , since $q_{2j-1} = b_j^{-1} T^{-3j} = a_1 \cdot a_2 \cdot \dots \cdot a_{2j-1}$)

74

$$= -(b_j^{-1} T^{-3j})^2 \cdot (-T^{-3j} \frac{b_j^2}{b_{j+1}}) = \frac{T^{-3j+1}}{b_{j+1}} \quad \text{which we wanted to prove}.$$

We immediately have the following

Proposition

Let $x_0 = [a_0]$, $x_1 = [a_0, a_1]$ and if $x_n = [a_0, a_1, ..., a_{2n-1}]$, then

 $\mathbf{x}_{n+1} = [a_0, a_1, ..., a_{2n-1}, a_{2n}, -a_{2n-1}, ..., -a_1].$

If n is at least two, then the continued fraction of x_n consists only of the partial quotients

 a_{2n-1} , a_{2n-2} , $-a_{2n-2}$, ..., a_1 , $-a_1$ and a_0 .

Then the distribution of the partial quotients for x_n is as follows ($n \ge 2$):

partial quotient

 a_{2n-1} a_{2n-2} $-a_{2n-2}$ a_{2n-3} $-a_{2n-3}$ \dots a_{2i} $-a_{2i}$ \dots a_1 a_0 number of occurrences

```
1 1 1 2 2 ... 2^{n-i-2} ... 2^{n-2} 2^{n-2} 1
```

Proof

We give a proof by induction on n.

 $x_2 = [a_0, a_1, a_2, a_3] = [a_0, a_1, a_2, -a_1], \text{ so the quotients } a_0, a_1, -a_1, a_2, \text{ occur once }.$ So for n equal to 2 the assertion holds. Suppose it holds for $2 \le n \le j$. Then we prove it holds for n = j+1. Since $x_{j+1} = [a_0, a_1, ..., a_{2j+1-1}] = [a_0, a_1, ..., a_{2j-1}, a_{2j}, -a_{2j-1}, ..., -a_1]$, it is

clear that the partial quotients a_{2j} and a_0 occur only once .

In the partial quotients $a_1, ..., a_{2j-1}$ we have

partial quotient

 a_{2j-1} a_{2j-2} $-a_{2j-2}$ a_{2j-3} $-a_{2j-3}$ \dots a_{2i} $-a_{2i}$ \dots a_1 $-a_1$ number of occurrences

 $1 \qquad 1 \qquad 1 \qquad 2 \qquad \dots \qquad 2^{j\cdot i\cdot 2} \qquad 2^{j\cdot i\cdot 2} \qquad \dots \qquad 2^{j\cdot 2} \qquad 2^{j\cdot 2}$ so in the partial quotients $-a_1, \ \dots, -a_{2^j-1}$ we have partial quotient

 $-a_{2j-1}$ a_{2j-2} $-a_{2j-2}$ a_{2j-3} $-a_{2j-3}$ \dots a_{2i} $-a_{2i}$ \dots a_1 $-a_1$ number of occurrences

1 1 1 2 2 ... 2^{j+i-2} ... 2^{j-i-2} ... 2^{j-2} 2^{j-2}

e de la Maria

This proves the proposition .

Using theorem 1, we immediately have the following :

Theorem 2

Let (b_n) be a sequence such that b_n is different from zero for all n different from zero .

Define a sequence (x_n) by putting $x_0 = [b_0]$, $x_1 = [b_0, b_1^{-1}z^{-1}]$ and if $x_n = [a_0, a_1, ..., a_{2^{n-1}}]$ then setting $x_{n+1} = [a_0, a_1, ..., a_{2^{n-1}}, -b_n^2 / b_{n+1} z^{n-1}, -a_{2^{n-1}}, ..., -a_1]$, then $x_n = \sum_{i=0}^n b_i z^i$ for all $n \in \mathbb{N}$.

Proof

Replace b_i by $b_i z^i$ in theorem 1, and put T equal to one .

Some examples

1) Let
$$x_n = \sum_{i=0}^n x^i$$
 (i.e. $b_i = 1$ for all i). Then $a_0 = 1$, $a_1 = x^{-1}$ and $a_{2n} = -x^{n-1}$ ($n \ge 1$)

2) Let
$$x_n = \sum_{i=0}^n \frac{x^i}{i!}$$
 (i.e. $\lim_{n \to \infty} x_n = e^x$).

Then $a_0 = 1$, $a_1 = x^{-1}$ and $a_{2^n} = -\frac{n+1}{n!} x^{n-1}$ ($n \ge 1$)

3) Let
$$x_n = \sum_{i=0}^n \frac{(-1)^i x^{2i}}{(2i)!}$$
 (i.e. $\lim_{n \to \infty} x_n = \cos x$).

Then
$$a_0 = 1$$
, $a_1 = -2x^{-2}$ and $a_{2^n} = (-1)^n \frac{(2n+2)(2n+1)}{(2n)!} x^{2n-2}$ $(n \ge 1)$

4) Let
$$x_n = \sum_{i=0}^n \frac{(-1)^i x^{2i+1}}{(2i+1)!}$$
 (i.e. $\lim_{n \to \infty} x_n = \sin x$).

Then $a_0=x$, $a_1=-6x^{-3}$ and $a_{2^n}=(-1)^n \, \frac{(2n+3)(2n+2)}{(2n+1)!} \, x^{2n-1}$ ($n\geq 1$)

In an analogous way as in the previous theorem, we have

Theorem 3

Let (b_n) be a sequence such that b_n is different from zero for all n different from zero, and let q be a natural number different from zero and one.

Define a sequence (x_n) by putting $x_0 = [b_0 z]$, $x_1 = [b_0 z, b_1^{-1} z^{-q}]$ and if $x_n = [a_0, a_1, ..., a_{2^{n-1}}]$ then setting $x_{n+1} = [a_0, a_1, ..., a_{2^{n-1}}, -b_n^2/b_{n+1} z^{-q^n(q-2)}, -a_{2^{n-1}}, ..., -a_1]$. Then $x_n = \sum_{i=0}^n b_i z^{q^i}$ for all $n \in \mathbb{N}$.

Proof

Replace b_i by $b_i z^{q^i}$ in theorem 1, and put T equal to one.

An Example

In [4] we find the following :

Let \mathbb{F}_q be the finite field of cardinality q. Let $A = \mathbb{F}_q[X]$, $K = \mathbb{F}_q(X)$, $K_{\infty} = \mathbb{F}_q((1/X))$

and let Ω be the completion of an algebraic closure of K_{∞} . Then A, K, K_{∞} , Ω are well-

known analogous of \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} respectively.

Let $[i] = X^{q^i} - X$ (the symbol [i] does not have the same meaning as in $x_0 = [a_0]$). This is just the product of monic irreducible elements of A of degree dividing i.

Let $D_0 = 1$, $D_i = [i] D_{i,i}^q$ if i > 0. This is the product of monic elements of A of degree i.

Let us introduce the following function : $e(Y) = \sum_{i=0}^{\infty} \frac{Y^{q^i}}{D_i}$ ($Y \in \Omega$). Then Thakur gives the following theorem :

Define a sequence x_n by setting $x_1 = [0, Y^{-q}D_1]$ and if $x_n = [a_0, a_1, ..., a_{2^{n-1}}]$ then setting

 $x_{n+1} = [a_0, a_1, ..., a_{2^{n-1}}, -Y^{-q^n(q-2)}D_{n+1}/D_n^2, -a_{2^{n-1}}, ..., -a_1], \text{ then } x_n = \sum_{i=1}^n \frac{Y^{q^i}}{D_i} \text{ for all } n \in \mathbb{N}.$

In particular, $e(Y) = Y + \lim_{n \to \infty} x_n$.

If we put $b_i = D_i^{-1}$ if i > 0, and $b_0 = 0$ in theorem 3, then we find the result of Thakur.

3. Continued fractions for sums of the type
$$\sum_{i=0}^{n} \frac{b_i}{z^{c(i)}}$$

In this section, b_i is a constant in z, and c(i) is a natural number. Our first theorem in this section gives the continued fraction for the sum $\sum_{i=0}^{n} \frac{b_i}{z^{2^i}}$ (i.e. $c(i) = 2^i$ for all i):

Theorem 4

Let (b_n) be a sequence such that b_n is different from zero for all n. A continued fraction for the sum $\sum_{i=0}^{n} \frac{b_i}{z^{2^i}}$ can be given as follows : Put $x_0 = [0, z/b_0]$, $x_1 = [0, \frac{z}{b_0} - \frac{b_1}{b_0^2}, \frac{b_0^3 z}{b_1^2} + \frac{b_0^2}{b_1}]$ and if $x_k = [a_0, a_1, ..., a_{2^k}]$ then setting $x_{k+1} = [a_0, a_1, ..., a_{2^{k-1}}, a_{2^k} + \gamma_{k+1}, \gamma_{k+1}^{-2} a_{2^k} - \gamma_{k+1}^{-1}, a_{2^{k+2}}, ..., a_{2^{k+1}}]$ where $\gamma_{k+1} = b_{k+1} \frac{(b_0)^{2^{k+1}}}{(b_1)^{2^{k+1}}}$, $a_{2^{k}+i} = \gamma_{k+1}^2 a_{2^{k}-i+1}$ if i is even, and $a_{2^{k}+i} = \gamma_{k+1}^{-2} a_{2^{k}-i+1}$ if i is odd ($2 \le i \le 2^k$), then $x_k = \sum_{i=0}^k \frac{b_i}{z^{2^i}}$ for all $k \in \mathbb{N}$.

Proof

If we have $x_n = [a_0, a_1, ..., a_{2^n}] = \frac{p_{2^n}}{q_{2^n}}$, we show by induction that x_n equals $\sum_{i=0}^{n} \frac{b_i}{z^{2^i}}$, and that q_{2^n} equals $z^{2^n} \frac{b_0^{2^n}}{b_1^{2^n}}$. For n = 0, 1 this follows by an easy calculation.

Suppose the assertion holds for $0 \le n \le k$. Then we show it holds for n=k+1 .

The first part of the proof, i.e. showing that $x_{k+1} = \sum_{i=0}^{k+1} \frac{b_i}{z^{2^i}}$ is analogous to the first part of the proof of [2], theorem 1.

Now if $[a_0, a_1, ..., a_{2^k}] = \frac{p_{2^k}}{q_{2^k}}$, then $[a_0, a_1, ..., a_{2^{k-1}}] = \frac{p_{2^{k-1}}}{q_{2^{k-1}}}$ and so

Continued fractions for finite sums

$$[a_0, a_1, ..., a_{2k-1}, a_{2k} + \gamma_{k+1}] = \frac{(a_{2k} + \gamma_{k+1})p_{2k-1} + p_{2k-2}}{(a_{2k} + \gamma_{k+1})q_{2k-1} + q_{2k-2}} = \frac{p_{2k} + \gamma_{k+1}p_{2k-1}}{q_{2k} + \gamma_{k+1}q_{2k-1}}$$

(by i) and ii) of the lemma)

Then [$a_0, a_1, ..., a_{2k-1}, a_{2k} + \gamma_{k+1}, \gamma_{k+1}^{-2} a_{2k} - \gamma_{k+1}^{-1}$] = $\frac{(\gamma_{k+1}^{-2} a_{2k} - \gamma_{k+1}^{-1})(p_{2k} + \gamma_{k+1} p_{2k-1}) + p_{2k-1}}{(\gamma_{k+1}^{-2} a_{2k} - \gamma_{k+1}^{-1})(q_{2k} + \gamma_{k+1} q_{2k-1}) + q_{2k-1}}$

(by i) and ii) of the lemma)

And so

 $[a_0, a_1, ..., a_{2^{k}-1}, a_{2^k} + \gamma_{k+1}, \gamma_{k+1}^{-2} a_{2^k} - \gamma_{k+1}^{-1}, \gamma_{k+1}^2 [a_{2^{k}-1}, a_{2^{k}-2}, a_{2^{k}-3}, ..., a_{2}, a_{1}]]$

$$= \frac{a_{2k}q_{2k-1}p_{2k} + \gamma_{k+1}a_{2k}q_{2k-1}p_{2k-1} - \gamma_{k+1}q_{2k-1}p_{2k} + q_{2k-2}p_{2k} + \gamma_{k+1}q_{2k-2}p_{2k-1}}{a_{2k}q_{2k-1}q_{2k} + \gamma_{k+1}a_{2k}q_{2k-1}q_{2k-1} - \gamma_{k+1}q_{2k-1}q_{2k} + q_{2k-2}q_{2k} + \gamma_{k+1}q_{2k-2}q_{2k}}$$

(by iv) of the lemma)

If we use the following equalities

$$(p_n - p_{n-2})q_{n-1} = a_n p_{n-1}q_{n-1}$$

$$(q_n - q_{n-2})p_n = a_n p_n q_{n-1}$$

$$(q_n - q_{n-2})q_{n-1} = a_n q_{n-1}^2$$

$$(by i) \text{ of the lemma })$$

then we find that the numerator equals $q_{2k} p_{2k} + \gamma_{k+1}$ (by iii) of the lemma) and the denominator equals $(q_{2k})^2$.

So we conclude

$$x_{k+1} = \frac{p_{2k}}{q_{2k}} + \frac{\gamma_{k+1}}{(q_{2k})^2} = \sum_{i=0}^{k} \frac{b_i}{z^{2^{i}}} + \frac{(b_1)^{2^{k+1}}}{z^{2^{k+1}}(b_0)^{2^{k+1}}} \quad b_{k+1} \frac{(b_0)^{2^{k+1}}}{(b_1)^{2^{k+1}}} = \sum_{i=0}^{k+1} \frac{b_i}{z^2}$$

We still have to show $q_{2k+1} = z^{2^{k+1}} \frac{(b_0)^{2^{k+1}}}{(b_1)^{2^{k+1}}}$,

In the same way as in the proof of theorem 1, we find that $q_{2^{k+1}} = C z^{2^{k+1}}$ where C is a constant. Let α_i be the coefficient of z in a_i .

Then for C, the coefficient of $z^{2^{k+1}}$ in $q_{2^{k+1}}$, we have

$$C = \alpha_1 \alpha_2 \dots \alpha_{2^{k-1}} \alpha_{2^k} (\gamma_{k+1}^{-2} \alpha_{2^k}) (\gamma_{k+1}^2 \alpha_{2^{k-1}}) (\gamma_{k+1}^{-2} \alpha_{2^{k-2}}) (\gamma_{k+1}^{-2} \alpha_{2^{k-3}}) \dots (\gamma_{k+1}^2 \alpha_1)$$

= $(\alpha_1 \alpha_2 \dots \alpha_{2^{k-1}} \alpha_{2^k})^2 = (\text{ coefficient of } z^{2^k} \text{ in } q_{2^k})^2 = \left(\frac{(b_0)^{2^k}}{(b_1)^{2^k}}\right)^2 = \frac{(b_0)^{2^{k+1}}}{(b_1)^{2^{k+1}}}$
and we conclude $q_{2^{k+1}} = z^{2^{k+1}} \frac{(b_0)^{2^{k+1}}}{(b_1)^{2^{k+1}}}$. This finishes the proof.

79

Ann Verdoodt

Some examples

1) If we put b_i equal to one for all i, and z is an integer at least 3, then we find theorem 1 of [2]:

ય તે કે તુનું

Let B(u,v) =
$$\sum_{i=0}^{v} \frac{1}{u^{2^{i}}} = \frac{1}{u} + \frac{1}{u^{2}} + \frac{1}{u^{4}} + \dots + \frac{1}{u^{2^{v}}}$$
 (u ≥ 3, u an integer)

Then
$$B(u,0) = [0,u]$$
, $B(u,1) = [0,u-1,u+1]$, and if $B(u,v) = [a_0, a_1, ..., a_n] = \frac{p_n}{q_n}$

then $B(u,v+1) = [a_0, a_1, ..., a_{n-1}, a_n+1, a_n-1, a_{n-1}, a_{n-2}, ..., a_2, a_1]$. 2) Put $b_i = \lambda^i$. Then we have $x_0 = [0, u]$, $x_1 = [0, u - \lambda, \frac{u}{\lambda^2} + \frac{1}{\lambda}]$ and if $x_k = [a_0, a_1, ..., a_{2k}]$, then $x_{k+1} = [a_0, a_1, ..., a_{2k-1}, a_{2k} + \gamma_{k+1}, \gamma_{k+1}^{-2} a_{2k} - \gamma_{k+1}^{-1}, a_{2k+2}, ..., a_{2k+1}]$, where $\gamma_{k+1} = \lambda^{k+1-2^{k+1}}$, $a_{2k+i} = \gamma_{k+1}^2 a_{2k,i+1}$ if i is even, and $a_{2k+i} = \gamma_{k+1}^{-2} a_{2k,i+1}$ if i is odd $(2 \le i \le 2^k)$,

all,

then
$$x_k = \sum_{i=0}^k \frac{\lambda^i}{u^{2^i}}$$
 for all $k \in \mathbb{N}$.

For some some sequences (b_n) and (c(n)), we can give a continued fraction for the sum

$$\sum_{i=0}^{\nu} \ \frac{b_i}{z^{c(i)}} \ \text{ as follows}:$$

Theorem 5

Let (b_n) be a sequence such that $b_n \neq 0$ for all n, and $b_0 \neq 0$, 1, -1, and 1/2, and let (c(n)) be a sequence such that c(0) = 0, and $c(n+1) - 2c(n) \ge 0$.

Put
$$x_0 = [-b_0^2, \frac{1}{b_0} - 1, \frac{1}{b_0} + 1] = [a_0, a_1, a_2] = \frac{p_2}{q_2} = \frac{p_{(0)}}{q_{(0)}}$$

and if
$$x_v = [a_0, a_1, ..., a_n] = \frac{p_n}{q_n} = \frac{p_{(v)}}{q_{(v)}}$$
,

then setting $x_{v+1} = [a_0, a_1, ..., a_n, \alpha_v z^{d(v)} - 1, 1, a_n - 1, a_{n-1}, ..., a_2, a_1]$,

where
$$d(v) = c(v+1) - 2c(v)$$
, $\alpha_v = \frac{b_v^2}{b_{v+1}}$ if $v \ge 1$ and $\alpha_0 = \frac{b_0^4}{b_1}$,
then $x_v = \sum_{i=0}^{v} \frac{b_i}{z^{c(i)}}$ for all v in N, and $q_{(v)} = \frac{z^{c(v)}}{b_v}$ if $v \ge 1$, $q_{(0)} = \frac{1}{(b_0)^2}$.

Remarks

1) The special form of b_0 , $x_0 = b_0 = [-b_0^2, \frac{1}{b_0} - 1, \frac{1}{b_0} + 1] = [a_0, a_1, a_2]$ is needed since in the expression $[a_0, a_1, ..., a_n] = \frac{p_n}{q_n}$ the integer n must be even .

2) The value of n is $n = 2^{v+1} + 2^{v} + 2$ (this can be easily seen by induction)

3) The only partial quotients that appear are $-b_0^2$, $\frac{1}{b_0} - 1$, $\frac{1}{b_0} + 1$, $\frac{1}{b_0}$, $\frac{1}{b_0} - 2$, $\alpha_v z^{d(v)} - 1$, and 1, so b_0 must be different from 0, 1, -1, and 1/2.

Proof

For v equal to 0, 1 or 2 we find this result by an easy computation.

We prove the theorem by induction on v.

Suppose we have
$$x_v = \sum_{i=0}^{v} \frac{b_i}{z^{c(i)}} = [a_0, a_1, ..., a_n] = \frac{p_n}{q_n} = \frac{p_{(v)}}{q_{(v)}}$$
 with $q_{(v)} = \frac{z^{c(v)}}{b_v}$
Then we show that $x_{w,v} = [a_0, a_1, ..., a_n] + \frac{p_n}{q_n} = \frac{p_{(v)}}{q_{(v)}}$ with $q_{(v)} = \frac{z^{c(v)}}{b_v}$

Then we show that $x_{v+1} = [a_0, a_1, ..., a_n, \alpha_v z^{d(v)} - 1, 1, a_n - 1, a_{n-1}, ..., a_2, a_1] = \sum_{i=0}^{b_i} \frac{b_i}{z^{c(i)}}$

with
$$q_{(v+1)} = \frac{z^{c(v+1)}}{b_{v+1}}$$
.

The first part of the proof, i.e. showing that $x_{v+1} = \sum_{i=0}^{v+1} \frac{b_i}{z^{c(i)}}$, is analogous to the first part of the proof of the theorem in [3].

:

;

Now, by repeated use of i) an ii) of the lemma, we have

$$[a_0, a_1, ..., a_n, \alpha_v z^{d(v)} - 1] = \frac{(\alpha_v z^{d(v)} - 1)p_n + p_{n-1}}{(\alpha_v z^{d(v)} - 1)q_n + q_{n-1}}$$

$$[a_0, a_1, ..., a_n, \alpha_v z^{d(v)} - 1, 1] = \frac{\alpha_v z^{d(v)} p_n + p_{n-1}}{\alpha_v z^{d(v)} q_n + q_{n-1}}$$

$$[a_0, a_1, ..., a_n, \alpha_v z^{d(v)} - 1, 1, a_n - 1] = \frac{a_n \alpha_v z^{d(v)} p_n + a_n p_{n-1} - p_n}{a_n \alpha_v z^{d(v)} q_n + a_n q_{n-1} - q_n}$$

$$\begin{aligned} \mathbf{x}_{v+1} &= [\mathbf{a}_0, \mathbf{a}_1, ..., \mathbf{a}_n, \alpha_v \, z^{d(v)} - 1, \ 1, \ \mathbf{a}_n - 1, \mathbf{a}_{n-1}, ..., \mathbf{a}_1] \\ &= [\mathbf{a}_0, \mathbf{a}_1, ..., \mathbf{a}_n, \alpha_v \, z^{d(v)} - 1, \ 1, \ \mathbf{a}_n - 1, [\mathbf{a}_{n-1}, ..., \mathbf{a}_1]] \end{aligned}$$

(using the definition of a continued fraction)

$$= \frac{a_n q_{n-1} \alpha_v z^{d(v)} p_n + q_{n-2} \alpha_v z^{d(v)} p_n + a_n q_{n-1} p_{n-1} - q_{n-1} p_n + q_{n-2} p_{n-1}}{a_n q_{n-1} \alpha_v z^{d(v)} q_n + q_{n-2} \alpha_v z^{d(v)} q_n + a_n (q_{n-1})^2 - q_{n-1} q_n + q_{n-2} q_{n-1}}$$

(by i), ii) and iv) of the lemma)

$$= \frac{p_n}{q_n} + \frac{1}{(q_n)^2 \alpha_v z^{d(v)}}$$
 (by i) and iii) of the lemma since n is even)

So
$$x_{v+1} = \frac{p_n}{q_n} + \frac{1}{(q_n)^2 \alpha_v z^{d(v)}} = \sum_{i=0}^v \frac{b_i}{z^{c(i)}} + \frac{(b_v)^2 b_{v+1}}{z^{2c(v)} (b_v)^2 z^{d(v)}}$$
 since $q_n = q_{(v)} = \frac{z^{c(v)}}{b_v}$, $\alpha_v = \frac{(b_v)^2}{b_{v+1}}$
$$= \sum_{i=0}^{v+1} \frac{b_i}{z^{c(i)}}$$

We still have to prove $q_{(v+1)} = q_{2n+2} = \frac{z^{c(v+1)}}{b_{v+1}}$, and since $\frac{z^{c(v+1)}}{b_{v+1}} = (q_n)^2 \alpha_v z^{d(v)}$, it suffices to prove that $q_{2n+2} = (q_n)^2 \alpha_v z^{d(v)}$.

We can not use the same trick here as in the proofs of theorems 1 and 4, since we do not necessarily have deg $q_{k+1} > deg q_k$ (q_k as a polynomial in z)

We already know that $q_{n+1} = (\alpha_v z^{d(v)} - 1)q_n + q_{n-1}$, $q_{n+2} = \alpha_v z^{d(v)}q_n + q_{n-1}$

Repeated use of i) of the lemma gives

$$q_{n+3} = q_{(n+2)+1} = a_n \alpha_v z^{d(v)} q_n + a_n q_{n-1} - q_n = r_1 \alpha_v z^{d(v)} q_n - q_{n-2} \quad (\text{ where we put } a_n = r_1)$$

$$q_{n+4} = q_{(n+2)+2} = (a_{n-1}a_n + 1)\alpha_v Z^{a(v)} q_n - a_{n-1}q_{n-2} + q_{n-1} = r_2\alpha_v Z^{d(v)} q_n + q_{n-2}$$

(where we put $a_{n-1}a_n+1 = r_2$)

$$q_{n+5} = q_{(n+2)+3} = (a_{n-2}(a_{n-1}a_n+1) + a_n)\alpha_v z^{d(v)} q_n + a_{n-2}q_{n-3} - q_{n-2}$$

= $r_3\alpha_v z^{d(v)} q_n - q_{n-4}$ (where we put $a_{n-2}(a_{n-1}a_n+1) + a_n = r_3$)

Continuing this way, we find

 $q_{(n+2)+k} = r_k \alpha_v \, z^{d(v)} \, q_n \, + \, (-1)^k \, q_{n-(k+1)} \, , \quad q_{(n+2)+k+1} = r_{k+1} \alpha_v \, z^{d(v)} \, q_n \, + \, (-1)^{k+1} \, q_{n-(k+2)} \, d_{k+1} = r_{k+1} \alpha_v \, z^{d(v)} \, q_{k+1} \, d_{k+1} \, d_{k+1} = r_{k+1} \alpha_v \, z^{d(v)} \, q_{k+1} \, d_{k+1} \, d_{k$

Then $q_{(n+2)+k+2} = (a_{n-(k+1)}r_{k+1}+r_k)\alpha_v z^{d(v)}q_n + (-1)^{k+1}a_{n-(k+1)}q_{n-k-2} + (-1)^k q_{n-k-1}$

 $= r_{k+2} \alpha_v \, z^{d(v)} \, q_n \, + \, (-1)^{k+2} \, q_{n-(k+3)}$

and finally we have $q_{2n} = q_{(n+2)+n-2} = r_{n-2}\alpha_v z^{d(v)} q_n + q_{n-(n-1)}$

 $q_{2n+1}=q_{(n+2)+n-1}=r_{n-1}\alpha_v\,z^{d(v)}\,q_n$ - q_{n-n} (we remark that n is even)

and so $q_{2n+2} = q_{(n+2)+n} = r_n \alpha_v z^{d(v)} q_n - a_1 q_0 + q_1 = r_n \alpha_v z^{d(v)} q_n$

So if we want to show that $q_{2n+2} = (q_n)^2 \alpha_V z^{d(v)}$, we must show that r_n equals q_n .

For the sequence (r_n) we have $r_0 = 1$, $r_1 = a_n$, $r_2 = a_{n-1}a_n + 1 = a_{n-1}r_1 + r_0$,

 $r_3 = a_{n-2}(a_{n-1}a_n+1) + a_n = a_{n-2}r_2 + r_1$, and continuing this way we find $r_{k+2} = a_{n-(k+1)}r_{k+1} + r_k$.

From this it follows that $[1, a_n, ..., a_1] = [1, c_1, ..., c_n] = \frac{t_n}{r_n}$ (we put $a_i = c_{n+1-i}$)

with $t_0 = c_0$, $r_0 = 1$, $t_1 = c_1 c_0 + 1$, $r_1 = c_1$, $t_n = c_n t_{n-1} + t_{n-2}$, $r_n = c_n r_{n-1} + r_{n-2}$ ($n \ge 2$),

Now n can be written as n = 2k+2 (see remark 2 following theorem 5) and so

$$[a_0, a_1, ..., a_n] = [a_0, a_1, ..., a_k, \alpha_{v-1} z^{d(v-1)} - 1, 1, a_k - 1, a_{k-1}, ..., a_1] = \frac{p_n}{q_n}$$

and then $[1, a_1, ..., a_k, \alpha_{v-1} z^{d(v-1)} - 1, 1, a_k - 1, a_{k-1}, ..., a_1] = [1, a_1, ..., a_n] = \frac{p_n}{q_n}$ where the q_i ($0 \le i \le n$) stay the same since q_i does not depend on a_0 .

So [1,
$$a_1$$
, ..., a_{k-1} , a_k - 1, 1, $\alpha_{v-1} z^{d(v-1)}$ - 1, a_k , a_{k-1} , ..., a_1] = [1, a_n , ..., a_1] = $\frac{t_n}{r_n}$

and we conclude $q_i = r_i$ for $0 \le i \le k-1$.

We have to show $q_n = r_n$. Now (by repeated use of i) of the lemma)

$$q_k = a_k q_{k-1} + q_{k-2}, r_k = q_k - q_{k-1};$$

$$q_{k+1} = \alpha_{v-1} z^{d(v-1)} q_k - q_k + q_{k-1}, r_{k+1} = q_k;$$

$$q_{k+2} = \alpha_{v-1} z^{d(v-1)} q_k + q_{k-1}, \ r_{k+2} = \alpha_{v-1} z^{d(v-1)} q_k - q_{k-1};$$

$$q_{k+3} = q_{(k+2)+1} = \alpha_{v-1} z^{d(v-1)} a_k q_k + a_k q_{k-1} - q_k = a_k \alpha_{v-1} z^{d(v-1)} q_k - q_{k-2}$$

$$= R_1 \alpha_{v-1} z^{d(v-1)} q_k - q_{k-2}$$
, where we put $a_k = R_1$,

$$r_{k+3} = r_{(k+2)+1} = a_k \alpha_{v-1} z^{d(v-1)} q_k + q_{k-2} = R_1 \alpha_{v-1} z^{d(v-1)} q_k + q_{k-2};$$

 $q_{k+4} = q_{(k+2)+2} = (a_{k-1}a_k+1)\alpha_{v-1}z^{d(v-1)}q_k - a_{k-1}q_{k-2} + q_{k-1}$

 $= (a_{k-1}a_k+1)\alpha_{v-1}z^{d(v-1)}q_k + q_{k-3}$

= $R_2 \alpha_{v-1} z^{d(v-1)} q_k + q_{k-3}$ where we put $(a_{k-1} a_k + 1) = R_2$,

 $r_{k+4} = r_{(k+2)+2} = (a_{k-1}a_k+1)\alpha_{v-1}z^{d(v-1)}q_k + a_{k-1}q_{k-2} - q_{k-1}$ $= (a_{k-1}a_k+1)\alpha_{v-1}z^{d(v-1)}q_k - q_{k-3} = R_2\alpha_{v-1}z^{d(v-1)}q_k - q_{k-3}$

If we continue this way, we find $q_{(k+2)+i} = R_i \alpha_{v-1} z^{d(v-1)} q_k + (-1)^i q_{k-(i+1)}$, and

 $e_{D_{1}} = \delta_{1}$

$$\begin{split} r_{(k+2)+i} &= R_i \alpha_{v-1} z^{d(v-1)} \, q_k - (-1)^i \, q_{k-(i+1)} \, (\, 0 \leq i \leq k \, , \, R_0 = 1 \,) \, , \, \text{and so we have} \\ q_{2k} &= q_{(k+2)+k-2} \, = R_{k-2} \alpha_{v-1} z^{d(v-1)} \, q_k + q_{k-(k-1)} \, , \, q_{2k+1} = q_{(k+2)+k-1} = R_{k-1} \alpha_{v-1} z^{d(v-1)} \, q_k - q_{k-k} \, (\, \text{we} \, remark \, \text{that } k \, \text{is even }) \, \text{and thus } q_{2k+2} = q_{(k+2)+k} = R_k \alpha_{v-1} z^{d(v-1)} \, q_k - a_1 q_0 + q_1 = R_k \alpha_{v-1} z^{d(v-1)} \, q_k \, , \\ \text{and } r_{2k} &= r_{(k+2)+k-2} = R_{k-2} \alpha_{v-1} z^{d(v-1)} \, q_k - q_{k-(k-1)} \, , \, r_{2k+1} = r_{(k+2)+k-1} = R_{k-1} \alpha_{v-1} z^{d(v-1)} \, q_k + q_{k-k} \, \text{ and} \\ \text{thus } r_{2k+2} &= r_{(k+2)+k} = R_k \alpha_{v-1} z^{d(v-1)} \, q_k + a_1 q_0 - q_1 = R_k \alpha_{v-1} z^{d(v-1)} \, q_k \, , \\ \text{So we conclude that } q_{2k+2} &= q_n \, \text{equals } r_{2k+2} = r_n \, . \, \text{This finishes the proof } . \end{split}$$

The case b_i equal to one, where z is an integer at least two, is studied by Shallit ([3]): Let (c(k)) be a sequence of positive integers such that $c(v+1) \ge 2c(v)$ for all $v \ge v'$, where v' is a non-negative integer. Let d(v) = c(v+1) - 2c(v). Define S(u,v) as follows:

 $S(u,v) = \sum_{i=0}^{v} u^{-c(i)}$, where u is an integer, $u \ge 2$. Then Shallit proved the following theorem :

Suppose $v \ge v'$. If $S(u,v) = [a_0, a_1, ..., a_n]$ and n is even, then

 $S(u,v+1) = [a_0, a_1, ..., a_n, u^{d(v)}-1, 1, a_n-1, a_{n-1}, a_{n-2}, ..., a_2, a_1].$

References

- [1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 1979.
- [2] J. O. Shallit, Simple Continued Fractions for Some Irrational Numbers, Journal of Number Theory, vol. 11 (1979), p. 209-217.
- [3] J. O. Shallit, Simple Continued Fractions for Some Irrational Numbers II, Journal of Number Theory, vol. 14 (1982), p. 228-231.
- [4] D. S. Thakur, Continued Fraction for the Exponential for $F_q[t]$, Journal of Number Theory, vol. 41 (1992), p. 150-155.

Ann VERDOODT Vrije Universiteit Brussel, Faculty of Applied Sciences Pleinlaan 2, B - 1050 Brussels Belguim