Recently Galashin, Grinberg, and Liu introduced the refined dual stable Grothendieck polynomials, which are symmetric functions in with additional parameters . The refined dual stable Grothendieck polynomials are defined as a generating function for reverse plane partitions of a given shape. They interpolate between Schur functions and dual stable Grothendieck polynomials introduced by Lam and Pylyavskyy in 2007. Flagged refined dual stable Grothendieck polynomials are a more refined version of refined dual stable Grothendieck polynomials, where lower and upper bounds are given for the entries of each row or column. In this paper Jacobi–Trudi-type formulas for flagged refined dual stable Grothendieck polynomials are proved using plethystic substitution. This resolves a conjecture of Grinberg and generalizes a result by Iwao and Amanov–Yeliussizov.
Accepté le :
Accepté après révision le :
Publié le :
Mots-clés : Jacobi–Trudi formula, Grothendieck polynomial, symmetric function
@article{ALCO_2022__5_1_121_0, author = {Kim, Jang Soo}, title = {Jacobi{\textendash}Trudi formulas for flagged refined dual stable {Grothendieck} polynomials}, journal = {Algebraic Combinatorics}, pages = {121--148}, publisher = {MathOA foundation}, volume = {5}, number = {1}, year = {2022}, doi = {10.5802/alco.203}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.203/} }
TY - JOUR AU - Kim, Jang Soo TI - Jacobi–Trudi formulas for flagged refined dual stable Grothendieck polynomials JO - Algebraic Combinatorics PY - 2022 SP - 121 EP - 148 VL - 5 IS - 1 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.203/ DO - 10.5802/alco.203 LA - en ID - ALCO_2022__5_1_121_0 ER -
Kim, Jang Soo. Jacobi–Trudi formulas for flagged refined dual stable Grothendieck polynomials. Algebraic Combinatorics, Tome 5 (2022) no. 1, pp. 121-148. doi : 10.5802/alco.203. http://www.numdam.org/articles/10.5802/alco.203/
[1] Determinantal formulas for dual Grothendieck polynomials (Preprint, https://arxiv.org/abs/2003.03907v1)
[2] The flagged double Schur function, J. Algebraic Combin., Volume 15 (2002) no. 1, pp. 7-26 | DOI | MR | Zbl
[3] Refined dual stable Grothendieck polynomials and generalized Bender–Knuth involutions, Electron. J. Combin., Volume 23 (2016) no. 3, 3.14, 28 pages | DOI | MR | Zbl
[4] Determinants and plane partitions, Unpublished manuscript
[5] Refined dual stable Grothendieck polynomials, http://www.cip.ifi.lmu.de/~grinberg/algebra/chicago2015.pdf
[6] Hopf algebras in combinatorics (Preprint, https://arxiv.org/abs/1409.8356v7)
[7] Free-fermions and adjoint actions on stable -Grothendieck polynomials (2020) (Preprint, https://arxiv.org/abs/2004.09499)
[8] Jacobi–Trudi formula for refined dual stable Grothendieck polynomials, J. Combin. Theory Ser. A, Volume 180 (2021), 105415, 33 pages | DOI | MR | Zbl
[9] Combinatorial Hopf algebras and -homology of Grassmannians, Int. Math. Res. Not. IMRN (2007) no. 24, rnm125, 48 pages | DOI | MR | Zbl
[10] Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., Volume 294 (1982) no. 13, pp. 447-450 | MR | Zbl
[11] A computational and combinatorial exposé of plethystic calculus, J. Algebraic Combin., Volume 33 (2011) no. 2, pp. 163-198 | DOI | MR | Zbl
[12] Determinantal identities for flagged Schur and Schubert polynomials, Eur. J. Math., Volume 2 (2016) no. 1, pp. 227-245 | DOI | MR | Zbl
[13] Refined dual Grothendieck polynomials, integrability, and the Schur measure (Preprint, https://arxiv.org/abs/2012.15011v1)
[14] Flagged Schur functions, Schubert polynomials, and symmetrizing operators, J. Combin. Theory Ser. A, Volume 40 (1985) no. 2, pp. 276-289 | DOI | MR | Zbl
Cité par Sources :