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Principal specializations of Schubert
polynomials in classical types

Eric Marberg & Brendan Pawlowski

ABSTRACT There is a remarkable formula for the principal specialization of a type A Schubert
polynomial as a weighted sum over reduced words. Taking appropriate limits transforms this
to an identity for the backstable Schubert polynomials recently introduced by Lam, Lee, and
Shimozono. This note identifies some analogues of the latter formula for principal specializations
of Schubert polynomials in classical types B, C, and D. We also describe some more general
identities for Grothendieck polynomials. As a related application, we derive a simple proof of
a pipe dream formula for involution Grothendieck polynomials.

1. INTRODUCTION

There is a remarkable formula for the principal specialization &.,(1,q,q>,...,¢" ') of
a (type A) Schubert polynomial as a weighted sum over reduced words. Originally a
conjecture of Macdonald [11], this identity was first proved algebraically by Fomin and
Stanley [6]. Billey, Holroyd, and Young [2, 16] have recently found the first bijective
proof of Macdonald’s conjecture.

In this note we identify some apparently new analogues of Macdonald’s identity
for the principal specializations of Schubert polynomials in other classical types. Our
methods are based on the algebraic techniques of Fomin and Stanley and will also
lead to a simple proof of (a K-theoretic generalization of) the main result of [8].

To state our main theorems we need to recall a few definitions. Throughout, we
let z; for i € Z be commuting indeterminates. We use the term word to mean a
finite sequence ajas - - - a, whose letters belong to some totally ordered alphabet. This
alphabet will usually consist of the integers Z with their usual ordering, and in any
case will always contain (Z, <) as a subposet.

DEFINITION 1.1. A bounded compatible sequence for a word a = ajas---ap s a
weakly increasing sequence of integers i = (i1 < 12 < -+ < ip) with the property that
<

ij < ij41 whenever a; < aj41  and i; < a; whenever 0 <.

Let Compatible(a) denote the set of all such sequences. Given i = (iy < --- < ip) €
Compatible(a), define z; = x;, - - - x;, and write 0 < i if the numbers i1,...,i, are all
positive.
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Let s; = (i, 4+ 1) denote the permutation of Z interchanging i and i + 1. Fix a
positive integer n and let S, == (s1,82,...,8,-1) C Sz = (s; : i € Z). Both S,, and
Sz are Coxeter groups with respect to their given generating sets. A reduced word for
w € Sz is a word ajas - - - a, of shortest possible length such that w = 54,54, - - 54
Let Reduced(w) denote the set of all such words.

P

DEFINITION 1.2. The Schubert polynomial of w € S, is
G, = Z Z xi € Z[x1,X2,y .oy Ty—1]-
a€Reduced(w) 0<i€Compatible(a)

Schubert polynomials are often defined inductively using divided difference oper-
ators, following the approach of Lascoux and Schiitzenberger. The formula that we
have given is [3, Thm. 1.1]. The identity of Macdonald [11] mentioned at the start of
this introduction is as follows.

THEOREM 1.3 (Fomin and Stanley [6, Thm. 2.4]). If w € S,, then
Gw(L q, q2’ o qn—1> _ Z [al]Q[aE];j "' i [ap]q qcomaj(a)7
a=aiaz---ap€Reduced(w) q
a;<ait1 i and [a]q = 11:qq and [p]q! = [p]q T [2]q[1]q-

Taking appropriate limits transforms the preceding formula into an identity for the
backstable Schubert polynomials, which may be defined as follows.

where comaj(a) =Y

DEFINITION 1.4. The backstable Schubert polynomial of w € S,, is

—
Sy = Z Z :L’iGZH...7$_1,$0,$1,...,$n_1]].

a€Reduced(w) i€Compatible(a)

This is the same as the formula for &,, except now i = (i1 < 42--- < i) may
contain non-positive integers. If w € S, then S, (...,0,0,21,29,...,%n_1) = Gy,
while gw( cyX9,2-1,20,0,0,...,0) is the Stanley symmetric function of w in the
variables z; for ¢ < 0 [10, Thm. 3.2].

Note that &,, is usually not a polynomial. These power series were introduced by
Lam, Lee, and Shimozono [10] in connection with Schubert calculus on infinite flag
varieties. They also arise as cohomology classes of degeneracy loci in products of flag
varieties [15].

If FeZ...,z_1,20,21,...,Tn—1] is homogeneous then the formal power series
F(x; — ¢'~1) obtained by setting x; = ¢'~! for all integers i < n is well-defined.
The following result is easy to derive from Theorem 1.3 and is also a special case of
Theorem 3.3. In this statement, for a word a = ajas---a, we write Xa = Zle a;
and £(a) = p.

<= . Sa+comaj(a
THEOREM 1.5. If w € S,, then &, (x; — ¢ ') = ZaeReduced(w) (q,l)(qz,l)...Z;eza),l)

where the right hand expression is interpreted as a Laurent series in g~ 1.

, =
EXAMPLE 1.6. Setting x; = ¢*~! in the definition of &,, gives another formula for

— .
Sy (z; = ¢'~1) as a sum over the reduced words for w. The corresponding terms in
these two summations need not agree, however: for a given word a = ajaz---a, €
Reduced(w), it can happen that

T D)

i€Compatible(a)

anJrcomaj(a)
(@=D( =1 (e = 1)
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For example, if w = (1,2)(3,4) and a = 1,3 then > ;. compatible(a) gD+ 40 =1) g

S g e e ? 4 og 424 ¢7'Z[g 7]
1341 <i2<3

Sa+comaj(a)

while @@= = (q_l)q(ZQ_l) expands into the Laurent series

Clar+ a2 +q 3+ ) g+ ) e g2+ Z[g ).

For w = (1,2)(3,4) there are only two reduced words and one has

§(1,2)(3,4) = €7 + (221 + @2 + 33) %1 + 2} + 1172 + 1123
=4 x% +2x_111 + 2012 + T _323
+ 2x9T1 + T_1T2 + T_oT3
+ x? + Toxo +x_173
+ 2122 + o3

+ 123

where ‘€ is the symmetric function -+ z;,. One computes

11 <ip<--<ig<0 Liy Lig

4

& i q - _ _ _
6(172)(3,4)(x1’_>q 1):W:+7q4+6q3+5q2+4q 1+3+2q+q2
using either Theorem 1.5 or the formula <Ed(q_l, g 2...)= (q—l)(q2—11)~~(qd—l)'

Our first new results are versions of the preceding theorem for Schubert polynomials
in other classical types. We begin with type B/C. Given 0 < i < n, define t; = t_; :=
(i,i + 1)(—i,—i — 1) and tg = (—1,1). Define WB® := (tq,t;,...,t,_1) to be the
Coxeter group consisting of the permutations w of Z with w(i) = i for |[i] > n and
w(—1i) = —w(i) for all i € Z.

A signed reduced word of type B for an element w € WBC is a word ajas---a,
with letters in the set {—n+1,...,—1,0,1,...,n—1} of shortest possible length such
that w = t4,%4, - - ta,. Let —0 denote a formal symbol distinct from 0 that satisfies
~1<-0<0<1andsett o=ty A signed reduced word of type C for w € WSBC
is a word ajas - - - ap with letters in {—n+1,...,—-1,-0,0,1,...,n — 1} of shortest
possible length such that w = t,,t4, - - - ta,. Let ReducedZ (w) and ReducedZ (w) denote
the respective sets of signed reduced words for w.

DEFINITION 1.7. The type B/C Schubert polynomials of w € WEC are

6B = E z; and 6§ = E zy =200 aB
aGReducedﬁ(w) aGReducedé(w)
i€Compatible(a) i€Compatible(a)

where bo(w) = |{i € Z: w(i) <0 < i}

Both of the “polynomials” &8 and &S are formal power series in the ring
Z[...,x_1,20,%1,-..,Tn_1]. If we substitute xz; — z; for i > 0 and x; — z1_; for
i < 0, then &8 and G specialize to the Schubert polynomials of types B and C
defined by Billey and Haiman in [1]; compare our definition with [1, Thm. 3].

Let Reduced (w) for w € WEC denote the subset of words in ReducedZ (w) whose
letters all belong to {0,1,...,n — 1}. In Section 2.2 we prove the following analogue
of Theorem 1.5.
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THEOREM 1.8. If w € WEC then
- ar 4 1)(qa2 + 1) . (qap + 1) .
65 T — qz 1y (q qcomaj(a)
( ’ 2 G- D@ D@1

where the right hand expression is interpreted as a Laurent series in g~ '.

EXAMPLE 1.9. If w = (1, —2)(2, —1) € WEC then the set Reduced (w) has 8 elements,
formed by adding arbitrary signs to the letters in ajasas = 0,1,0. One can show that

S -2)-1) = 4'erer — 4%y

a=ajaz--apEReducedc (w)

=+ 4;10,23524 + 4x32x0 + 8r_3x_1T0 + 436,4:103
+ 417_3558 + 8x_sx_1x9
+ 4x_oxd + 422 |1
+ 417_11'8

where ‘€, = > Ti, Tiy - - - Ti, as in Example 1.6. It follows that

- 4q
6C B (T — ql W
(1,-2)(2.-1) (@i el P TRy

= +3607 % +28¢7 8 +20¢7 7 +12¢7 ¢ +8¢7° +4¢ 4.

11 <ig<--<ig<0

We turn next to type D. For 1 <1 < n, let
ri=r_;=(i+1)(—i,—i—-1)=¢
but define
r1=(1,2)(-1,-2)=t1 and r_q1:=(1,—-2)(—1,2) = tot1to.

Define WP := (r_i,71,79,...,7,_1) to be the Coxeter group of permutations
w € WEC for which the number of positive integers i with w(i) < 0 is even. A signed
reduced word for w € WP is a word ajas---a, with letters in the set {-n +
1,...,—=2,—-1,1,2,...,n — 1} of shortest possible length such that w = rq, 74, - 74

.
Let Reduced:,(w) denote the set of such words.

DEFINITION 1.10. The type D Schubert polynomial of w € WP is

65}: Z Z xi6Z[[...,x,l,xo,xl,...,xn,ﬂ].

a€ Reducedg (w) i€Compatible(a)

If we again substitute x; — z; for ¢ > 0 and x; — z1_; for ¢ < 0, then our definition
of the power series G2 specializes to Billey and Haiman’s formula for the Schubert
polynomial of type D given in [1, Thm. 4].

Suppose a = aqaz - - - a, is a sequence with a; € {£1,£2,43,...,£(n —1)}. Define
(1) comajp(a) = {ia; >0} + > 2i

a; <Qi+1
where < is the order -1 < -2 < --- < —n < 1 < 2 < --- < n. For example, if
a = ajagazay = —1,—2,3, 1 then comajp(a) = 2+ (24 4) = 8. We prove the following
in Section 2.3.

THEOREM 1.11. If w € WP then

Dy s gi1) — (@@ + 1) (@ 4+ 1) comagy )
Shwrrd™= Y @D D 1)

a:alaQ---apeReducedﬁ(w)

where the right hand expression is interpreted as a Laurent series in g~ 1.
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EXAMPLE 1.12.1f w = (1,—1)(4,—4) € WP then the set Reduceds (w) has 32 ele-
ments, formed by adding signs to the letters in ajasaszasasas = 3,2,1,1,2,3 in all
ways that give opposite signs to the two entries with absolute value one. One can
compute that
<_
6'(317_1)(4,_4) = T1T2X3 P3 —+ ($1£L’2 —+ Ir1Ts3 —+ £U21'3)$4 —+ (fEl =+ T2 —+ $3)$5 —+ $6
=+ xéxlxg + 2:3_115812:33 + 2x2_1x0x1:r2x3 + 2:6_2553361:5213
+ xéxgxg + 230_11‘(2)1“13021‘3

3
+ xpr1T273

&
where Py for d > 0 is the Schur P-function % Zi:o ea(T0,T—1,... )ha—a(xo,2-1,...).

Using the formula ?d(qfl, q?...)= (%;r,l)l()(ij,l)l)(q(;j)l ) one can check that

12(,2
- +1)
&P - N i—1 q°(q
(=1 4)( ) (=13 (¢*=1)(¢° - 1)

= 446070 + 271+ 1573 + 72 + 3¢ + 1,
which agrees with Theorem 1.11.

Setting ¢ = 1 in Theorem 1.5 leads to surprising enumerative formulas involving
reduced words, compatible sequences, and plane partitions [5]. By contrast, the power
series gw, 6B, &S, and GP do not converge upon specializing z; + 1 for all 3. It would
be interesting to find variations of our formulas with clearer enumerative content.

The second half of this note contains a few other related results. In Section 3,
we extend Theorems 1.5, 1.8, and 1.11 to identities for Grothendieck polynomials.
Our proofs of these formulas are fairly straightforward adaptations of the algebraic
methods in [6, 9]. It is an interesting open problem to find bijective proofs of these
identities along the lines of [2].

Our approach has one other notable application, which we discuss in Section 4.
There, we develop a simple alternate proof of the main result of [8], which gives a
pipe dream formula for certain involution Schubert polynomials. We are able to prove
a more general K-theoretic formula, partially resolving an open question from [8, § 6].

2. PRINCIPAL SPECIALIZATIONS OF SCHUBERT POLYNOMIALS

This section contains our proofs of Theorems 1.8 and 1.11. Throughout, we fix a
positive integer n and let R be an arbitrary commutative ring containing the ring of
formal power series Z[z; : i < n].

2.1. N1L-COXETER ALGEBRAS. The algebra introduced in this section figures promi-
nently in [6] and in several of our arguments. Let (W, S) be a Coxeter system with
length function ¢. Let NilCox = NilCox(WW) be the R-module of all formal R-linear
combinations of the symbols u, for w € W. This module has a unique R-algebra
structure with bilinear multiplication satisfying

I if L(vw) = £(v) + L(w),
vUw 0 if L(vw) < L(v) + L(w),

Following [6, § 2], we refer to NilCox as the nil-Cozeter algebra of (W, S). Choose
z,y € R. Given s € S, define hs(z) := 1 + zus € NilCox. One checks that if s,t € S
and st = ts then

hs(x)hs(y) = hs(x +y) and  hg(x)hi(y) = he(y)hs(z).

for v,w e W.
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We will also need the following general identity, which is equivalent to [6, Lem. 5.4]
after some minor changes of variables:

LEMMA 2.1 ([6, Lem. 5.4]). Let t1,t3,...,tx be some elements of an R-algebra with

identity 1, and suppose q, z1, z2, ...zN are formal variables. Then

O N Z Z ... Z

H H(1+qj_1ziti) _ Z Z a12 as ap qcomaj(a),cal,(a2 L. tap
j=—ooi=1 p>0a1,a2,..., (q —D(¢>=1)---(¢? = 1)

where comaj(a) = 1 and the coefficients on the right are viewed as Laurent

1

a; <ai41
series in q~

2.2. TypeE B/C. Here, let NilCox = NilCox(WE¢) denote the nil-Coxeter algebra
of type B/C Coxeter system (W, S) = (WBC {to,t1,...,t,_1}) and define h;(x) :=
1+ zu;, € NilCox for integers —n < @ < m and = € R. Recall that ¢; = t_; so we
always have h;(x) = h_;(x). Let

Ai(x) = hp—1(@)hp—o(x) - - hy(x),
(2) B(z) = hp—1(x) - hi(z)ho(x)h_1(x) - - - h_py1(2),
C(z) = hn-1(x) - - hi(z)ho(z)ho(x)h—1(2) - hopia(2),

and note that ho(x)ho(x) = ho(22). Finally consider the infinite products in NilCox
given by

0 n—1
(3) 6B = H B(x;) H Aij(z;) and &C:= H C(x; H Ai(x;).
i=—00 i=1 i=—00

It straightforward to see that 68 = > j1ec 68 - uy, and 8¢ =3 11ec 65 - uy.
Less trivially:

PROPOSITION 2.2. It holds that
n—1 n—1
6B = ﬁ (ho(acj) H hi(zit; —|—1:j)> and &¢ = H H hi(zit; + ;).
j=—o0 i=1 j=—00 i=0
Proof. We will just prove the formula for &€ since the other case is similar. Let
Ai(2) = hi(@)his1 (@) - hp1(2).
Since A;(x) = Aj1(x)hi(z) and C(z) = A1 (z)ho(z + 2) A1 (), we have

1:[ O(zz) ’ Al(ﬂfo)ho(fco + JUo)gl(5130)141(3'51)142(%2) ce An—l(wn—l)-

1=—00

The elements h;_s(z), A;(y), and A;(2) all commute by [6, Lem. 4.1]. Using this fact
and the identities A;(x) = A;11(z)h;(x) and A4;(x) = h; ( )A;+1(z), one can show

ho(Io+930)111(I0)A1(I1)A2($2) Ap—1(zn-1) HA Ti—1) Hh x; + o).

=0

Substituting this into our formula above gives ¢ = &%(z; — ;1) Hi:_ol hi(z; + x0)
so by induction we have ¢ = &%(z; — z;_n) HS_ ~na1 im0 ' hi(ziy g + x;) for all
N > 0. But it is easy to see that limy o, &%(2; — z;_n) = 1 as a limit of power
series, so the result follows by sending N — oo. O

We can now prove Theorem 1.8.
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Proof of Theorem 1.8. To obtain the desired formula, set 2; = ¢°~! in Proposition 2.2,

apply Lemma 2.1 with N = n, 2z; = 1 +¢'~!, and t; = uy,_,, and then extract the
coefficient of u,,. O

2.3. TyPE D. Now, let NilCox = NilCox(WP) denote the nil-Coxeter algebra of
(W,8) = WP {r_1,71,...,7,_1}) and define h;(x) := 1 + xu;, € NilCox for all
ie{£l,£2,...,£(n—1)} and x € R. Let

Ai(x) = hn1(@)hn—2(x) - - hi(),
(4) Ai(x) = hi(@)hig1(2) - hna (@),

D(x) = hp_1(x)---hi(x)h_q1(x) - h_pt1(x).
The Coxeter group WP has a unique automorphism w + w* that maps r; — r_; for
1 €< i < n. This map extends by linearity to an R-algebra automorphism of NilCox

with u}, := uy~. We have A;(z)* = A;(x) for 1 < i < n and D(z)* = D(z), while
A1(z)* = hp—1(2)hp—2(x) - - - ho(xz)h_1(z). Consider the infinite products in NilCox

0 n—1 0 n—1
(5) &P ::,H D(xi)HAi(a:i) and (&P)* ::»H D(xi)HAi(xi)*.

We have &P =3 110 65 - u,, and (8°)* =3 110 65 - wy+. In addition:
PROPOSITION 2.3. It holds that

0 n—1
&P = H (H h_i(ziy2j—1 + T25-1) Hh ml+2j—|—x2])>,

j=—0o0 \i=1 i=1

Proof. Since A;(z) = Asp1(2)hi(x) and D(z) = Ay (2)* A (), we have
—1

H D(xl) . Al(xo)*gl (xo)Al(.ﬁl)AQ(Z‘g) e An_l(l‘n_l).

1=—00

Repeating the argument in the proof of Proposition 2.2, we deduce that &P =
(&P)*(z; = wi1) H;:ll hi(z; +x0). An analogous identity holds for (&P)*. Alternat-
ing these formulas gives

0 n—1 n—1
6D = GD((Ei — xi72N) H (H h -T'LJer 1 + .’L'Qj 1) H hi(xi+2j + .TQJ))
j=—N-+1 1=1 =1

for all N > 0. It is again easy to see that limpy_, GD(mi — x;—on) = 1 as a limit of
formal power series, so the result follows by sending N — oc. O

We can now also prove Theorem 1.11.
Proof of Theorem 1.11. By Proposition 2.3 we have
&P (@i = ¢ 1)
0 n—1 ‘ n—1 -
— H <H(1+q2(]1)(1+q Uy 74) <1+q j—1) . (1+ql)u7l)>.
j=—o0 \i=1 i=1

To get the desired expression for G apply Lemma 2.1 with ¢ replaced by ¢? and
N = 2n—2 to the right side of the preceding identity, using the parameters z; = 1+¢°,
Zn14i = q(1+¢%), t; = u,_,, and t,_14; = u,, for 1 < i < n. Then extract the
coefficient of u,,. O

Algebraic Combinatorics, Vol. 4 #2 (2021) 279



ERIC MARBERG & BRENDAN PAWLOWSKI

3. PRINCIPAL SPECIALIZATIONS OF GROTHENDIECK POLYNOMIALS

In this section we describe some extensions of Theorems 1.5, 1.8, and 1.11 for
Grothendieck polynomials in classical types. The identities proved here are more
general but also more technical than the formulas sketched in the introduction.

3.1. ID-COXETER ALGEBRAS. Again let (W, S) be an arbitrary Coxeter system with
length function ¢. For the results in this section, we work in a generalization of the
algebra NilCox(TV). Recall that R is an arbitrary commutative ring containing Z[z; :
i < n]. From this point on, we fix an element 3 € R.

Let IdCoxg = ldCoxg(W) be the R-module of all formal R-linear combinations
of the symbols 7, for w € W. This module has a unique R-algebra structure with
bilinear multiplication satisfying

TpTw = Tow if L(vw) = £(v) + L(w) and 72 = B,

for v,w € W and s € S [9, Def. 1], which we refer to as the id-Cozeter algebra of
(W, S). For z,y € R and s € S, define

(6) @y =x+y+pPry and AP (z):=1+zn,.

Then hgﬁ)(x)hgﬁ) (y) = hgﬁ)(x@y), and if st = ts then hgﬁ)(x)hgﬁ) (y) = hgﬁ)(y)hgﬂ) (z)
[9, Lem. 1].

%
3.2. TYPE A. Let S, = (s; : ¢ < n) be the Coxeter group of permutations w € Sz
%
with w(i) = ¢ for all ¢ > n. In this section we write ldCoxg = IdCoxg(.S,) and set

m; = ms, € ldCoxg for integers ¢ < n. Define Hecke(w) for w € S, to be the set of
words aias - - - ay such that m, = ﬂN*Z(“’)WGIW@ -+ Tq, - Recall the set Compatible(a)
from Definition 1.1.

<_
DEFINITION 3.1. The backstable Grothendieck polynomial of w € S,, € S,, is

<_ .
&, = Z Z B g € ZIAIL. .., m_1, 20,71, - . ., Tp1]
a€Hecke(w) i€ Compatible(a)
%
The function B, = &y,(...,0,0,21,22,.. .(,_xn,l) is the ordinary Grothendieck
polynomial of w € S,,. The power series G, := G, (...,23,22,21,0,0,...,0) given by

setting x; — 0 for ¢ > 0 and x; — x1_; for ¢ < 0 is a symmetric function in the x;
variables, which is usually called the stable Grothendieck polynomial of w € S,,.

(_
Specializing 8 +— 0 transforms &, — 6 from Section 1. The Grothendieck poly-
nomials &,, are closely related to the K-theory of flag varieties and Grassmanni-
ans [4, 13]. We do not know of a similar geometric interpretation for the backstable

Grothendieck polynomials gw.
For ¢ <nand z € R, let

hz(ﬂ) () =14 2am; and Al(ﬂ) () := hgi)l(x)hngJQ(x) e hgﬁ)(x).

7N &= AP () AP (20_2) AP (2, 1) H AP (2;) € 1dCoxg.

1=—00
If w € S,, then the coefficient of 7, in this expression is &,,.

PROPOSITION 3.2. It holds that & = ]_[],_DO | h(B)(xiﬂ-).
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Proof. We have = ~-~A§ﬁ) (xo)héﬁ)(xo)Agﬁ) (xl)hgﬁ)(m) . AP (xn_g)hgf_)l(xn_l)

n—1
by definition. As hEB)(az) and Agf_)Q(y) commute, it follows that ® = g(:vl —
n— . N il e n—
Zi1) Hi:—loo hE’B)(xi) so by induction & = &(x; — z;_N) H?:—N+1 Hi:—loc hE’B)(xiﬂ-)

%
for all N > 0. But we have limy_ o, &(x; — x;—n) = 1 as a limit of formal power
series, so the result follows by sending N — oo. O

We can now prove the following generalization of Theorem 1.5.

THEOREM 3.3. If w € S,, C <§n then

=

<Q_iw(xi = qi_1> = Z

a€Hecke(w)

ﬁ[(a)—é(w)
q
(¢—1)(¢* = 1) (¢"*) —1)
1

where the right hand expression s interpreted as a Laurent series in q~ .

Ya+comaj(a)

%
Proof. If w € S, then the coefficient of 7, in & is the same as the coeﬁgcient of Ty,
in the truncated product ng_oo H;:ll hz(-ﬂ)(:ciﬂ). This coeﬂicientlis &, and the
theorem follows by applying Lemma 2.1 with N =n —1 and zt; = ¢'7,, to the latter
expression. O

There are Grothendieck polynomials in the other classical types [9] which generalize

<—
6B, &, and &P in the same way that &, generalizes &,,. We discuss these formal
power series next.

3.3. TypE B/C. In this section let IdCoxg = ldCoxs(WEC) and write m; = m, €
IdCoxs for —n < i < n. Given a permutation w € WSC, define Hecke}(w)
and Heckeé(w) to be the sets of words ajas---ay, with letters in {—n +
1,...,-1,0,1,....n—1}and {-n+1 < - < -1<-0<0<1< - <n—1}
respectively, such that 7, = N “r, 7., - 74, € |dCoxs, where £(w) denotes
the usual Coxeter length of w and m_g := mg € IdCoxg. Recall that we view —0 as a
symbol distinct from 0.

DEFINITION 3.4. The type B/C Grothendieck polynomials of w € W2 are

63 = Z Bt g and 65 = Z B —w) g,
aEHeckeﬁ(w) aEHeckei(w)
i€Compatible(a) i€Compatible(a)

We may consider the finite sums

6B = Z ®8 .1, €1dCoxs(WE®) and &€= Z &< -1, € 1dCoxs(WSEC).

weWBC weWBC
Define Al(-ﬁ)(x), B®)(z), and C®)(z) as in (2) but with h;(x) replaced by

KA (z) =1+ zm; € 1dCoxs(WEC) for —-n <i<nand z € R.

7

Then B and &€ are given by the formulas in (3) with A;, B, C replaced by AEB),
BW® C¥), Comparing with [9, Def. 9] shows that &8 and &< are obtained from
Kirillov and Naruse’s double Grothendieck polynomials GB(a,b;z) and GS(a,b; x) by
setting a; — T, bl — 0, and Ti > T1—4.

PROPOSITION 3.5. It holds that
0

0 n—1 n—1
®° = H <héﬂ)(xj) H hgﬂ) (xiy; ® a:j)> and ®¢ = H H hgﬂ)(ziﬂ & ;).

j=—o0 i=1 j=—o00 i=0
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Proof. Since Agﬁ)(x) commutes with ggﬁ)(x) = hgﬁ)(x)hgi)l(:r) e hgﬁ)l(x) by 9,
Lem. 3], the result follows by the same proof as Proposition 2.2, mutatis mutandis. O

Given a word a = a1a2---ap witha; e {—n+1< - - <-1<-0<0<1<---<
n — 1}, let I(a) be the set of indices ¢ € [p] with a; € {1,2,...,n — 1} and define

(8) Yec(a) = Z a; and comajgc(a) = Z i

i€l(a) ;=41

where < is the order —0 < 0 < =1 < 1 < =2 < 2 < .... For example, if a =
—1,1,-2,1 then ¥gc(a) =1+ 1 =2 and comajgc(a) =1+2 = 3.

THEOREM 3.6. If w € WEC then the following identities hold:
B i1y gt —L(w) - e
(1) ®w(mi = q 1) - ZaeHeckeﬁ(u}) (q—1)(q2_1).‘.(qe(a)_1)q sc(a)+eomajec(a)
C i—1) £(a)—£(w) Ygc(a)+comajgc(a
(2) 6“’(‘%1 =q ) - ZaEHeckeg(w) (qfl)(q271)..4(qf(a)71)q sc(a)+ el )
1

The right hand expressions in both parts are interpreted as Laurent series in q~ .

The second identity reduces to Theorem 1.8 when g = 0 since the sum
S, el reomajec(a) gver all words a = ajaz -+ - a, € ReducedZ (w) with the same un-
signed form is exactly the product (gl*! +1)(gl*2! +1) - - - (glor! 4 1)geomaillarllazl-las]),

Proof. Part (1) is similar so we just prove (2). As hgﬁ) (iy; Pxj) = hgﬁ) (xj)hl(ﬂ)(xiﬂ),

we have
0 n—1
oz g = [ [Ia+& - m)a+d g -m)
j=—o00 i=0

by Proposition 3.5. The identity for &< follows by extracting the coefficient of
Ty from the right side after applying Lemma 2.1 with N = 2n and with the pa-
rameters 21, zs,. .., %o, and t1,ts, ..., ts, replaced by 1,1,1,¢,1,¢%,...,1,¢" "' and
Qs 0> T, Ty« -« Tn—1, Tn—1, respectively. O

3.4. TYPE D. In this section let [dCoxg = IdCox (W) and m; := m,, € IdCoxs. Given
w € WP, let Heckel(w) be the set of words ajas - - - ay with letters in [£(n — 1)] =
{#+1,42,...,£(n — 1)} such that 7, = N “Wr, 74, - T4y € ldCoxg, where £(w)
is the usual Coxeter length.

DEFINITION 3.7. The type D Grothendieck polynomial of w € WP is

@3 — Z Z ﬂé(i)fé(w)xi.

aEHeckeE (w) i€Compatible(a)
We consider the sum

6°:= Y &2 m, € 1dCoxs(WD).
weWP

If we define Agﬁ)(;v) and D) (z) as in (4) but with h;(z) replaced by
hgﬁ) (z) =1+ am; € 1dCoxz(WD) fori € [£(n—1)] and z € R,

then &P is given by the formula in (5) with A; and D replaced by Agﬁ) and D),
Comparing with [9, Def. 9] shows that &P is obtained from Kirillov and Naruse’s
double Grothendieck polynomial GP(a,b;z) by making the substitutions a; — z;,
bi — 0, and Ti b= T1—4.
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PRrROPOSITION 3.8. It holds that
0 n—1 n—1
6®= [] (H W) (14251 @ 22-1) 1T WP (@i40; @ zzj)) :
j=—o0 \i=1 i=1

Proof. Similar to Proposition 3.5, the result follows by repeating the proof of Propo-
sition 2.3 after adding “(8)” superscripts to all relevant symbols and substituting

hgﬁ) (x)hEB) (y) = hgﬁ) (x ®y) wherever the identity h;(x)h;(y) = h;(x +vy) is used. O
To state an analogue of Theorem 1.11 for &2 we consider the ordered alphabet
{-1"<-1<-2'<-2<-.<-—n<-n=<1"<1<2=<2<---<n <n}.

If w € WP then let Primed Heckejé(w) denote the set of words in this alphabet which
become elements of Hecke%(w) when all primes are removed from its letters. Given

such a word a = ajaz---ap, let J(a) be the set of indices ¢ € [p] for which a; is
unprimed, and define

Yp(a) = Z la;] and comajp(a) = |[{i:a; € {1',1,2,2,... }} + Z 2i.
i€J(a) @ =0i+1

For example, if a = 2/,—1’,—1,-3,2 then ¥p(a) = 1+ 3 + 2 = 6 and comajp(a) =
2+ (4+6+8) = 20.

THEOREM 3.9. If w € WP then

CHOEY A E DY

aEPrimedHeckeﬁ (w)

Bla)—t(w)
@ =Dl =1 (@@ —1*

Yp(a)+comajp(a)

where the right hand expression is interpreted as a Laurent series in g~ 1.

As with Theorem 3.6, this identity reduces to Theorem 1.11 when g = 0.

Proof. The proof is similar to Theorem 3.6. Proposition 3.8 implies that &P (z;
i—1y :
g 1) is

0 n—1
H (H (1 + qQ(j—l) . W—i)(l + q2(j—1) . qi . 7T—i)

j=—o0 \i=1

n—1
H (1+ PV g i) (1 + QUYL gt m)) .

i=1
The identity for &2 follows by extracting the coefficient of 7, from this expres-
sion after applying Lemma 2.1 with ¢ replaced by ¢?> and with N = 4n — 4.

When applying the lemma, we set the parameters z1,zs,...,29,—2 (respectively,
22n—1,%2n, - Z4n74) to ]-, q, 13 q2a ]-, q3 cee (respectively, q, q27 q, q37 q, q4 s )7 while
taking tl, tg, . ,fgnfg (respectively, fgnfl, fgn, . ,f4n,4) to be 1, M1, T—2,T_2,...
(respectively, w1, 71, T2, T, ... ). ]

4. INVOLUTION GROTHENDIECK POLYNOMIALS

This final section is something of a digression. Here, we reuse the techniques intro-
duced above to give a simple proof of a new formula for certain involution Grothendieck
polynomials.

In this section, we let IdCoxg = IdCoxg(.S,,) be the id-Coxeter algebra for the finite
Coxeter system (W, S) = (Sy, {s1,52,..,8n—1}), and write m; := 7, € I[dCoxs. Let

I, = {w €S, w= w_l} and I,';PF = {w_llFPFw Tw e Sn}
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where 1FPF = ...(1,2)(3,4)(5,6)--- denotes the permutation of Z mapping i
i — (—1)". The sets Z,, and ZF"F are always disjoint, although when n is even the
elements of ZFPF are naturally in bijection with the fixed-point-free elements of Z,,.

Let InvolModg and FixedModg denote the free R-modules consisting of all R-linear
combinations of the symbols m, for z € Z,, and z € Z'°F, respectively. These sets
have unique right l[dCoxg-module structures (see [12, § 1.2 and § 1.3]) satisfying, for
each integer 1 < i < n,

mys, i 2(2) < z(1 + 1) and zs; = s;2,
M = S My, s, if 2(i) < 2(i + 1) and zs; # s;2, for z € Z,
Bm, if 2(7) > z(i+ 1),

and
Ms,zs, if 2(1) < z(i 4+ 1),
m.m; =< pm, ifi+1%#2(4) > z2(i+1)#4, for z € ZWFF.
0 ifi+1=2(i)>z2G+1) =1,
An involution Hecke word for z € 7, is a word ajasg - - - a, such that

MATay Tay *** Ta, = BNm, e InvolModg  for some integer N > 0.

To avoid excessive subscripts, define

miPF := myree € FixedModg.

An involution Hecke word for z € IFPF is a word ajas - - - a, such that
mEPFwaIWQZ ST, = BNm, € FixedModg for some integer N > 0,

assuming Y # 0 for N > 0. Neither of these definitions depends on A,
but in the fixed-point-free case we wish to exclude words ajaz---a, for which
2= 8a, " SapSa; 177 84,80y - - - Sa,_, has a; + 1 = z(a;) > z(a; + 1) = a; for some i.

Let InvHecke(z) denote the set of involution Hecke words for an element z in Z,, or
IFPF. This set was denoted as either HO(z) for z € Z,, or HP(2) for z € ZFPF in [12].
Also define

(z) = min{l(a) : a € InvHecke(z)}.
For an explicit formula for 7, see [12, Eq. (5.1)].

EXAMPLE 4.1.If y = s38283 = 828382 = (2,4) € Z,, then InvHecke(y) is the set of all
finite words on the alphabet {2,3} in which 2 and 3 both appear. If w = (2,3,4) =
5983 € S, and 2z = w1FPFyw = ... (=3, -2)(-1,0)(1,4)(2,3)(5,6)(7,8) - - - € ZFPF,
then InvHecke(z) is the set of words obtained by prepending 2 to a nonempty word

~ ~

on {1,3}. In either case £(y) = £(z) = 2.
Our final theorem concerns these analogues of &,,:

DEFINITION 4.2. The involution Grothendieck polynomial of z € Z,, LI ZFFF is

~

@z = Z Z 5Z(i)76(z)$i S Z[ﬁ][l’l,xg,...,.’tn,l].

a€lnvHecke(z) 0<i€Compatible(a)

If n is even and z € ZFPF then ®. coincides with the symplectic Grothendieck
polynomials &SP studied in [13, 14]. The paper [13] also introduces certain orthogonal
Grothendieck polynomials &9 indexed by z € Z,,, but these are generally not the same
as (’Aﬁz. However, (‘/52 does specialize when 3 = 0 to both kinds of involution Schubert
polynomials & and éEPF considered in [7, 8].
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Because InvolModg and FixedModg are ldCoxg-modules, there exists for each z €
T, UZFPF a set HeckeAtoms(z) C S, (see [12, § 2.1]) such that

(9) InvHecke(z) = |_| Hecke(w) and 6. = Z Bz(w)*az)(ﬁw
weEHeckeAtoms(z) weEHeckeAtoms(z)
where
B, = <Q—5w(...,070,9617962,...7;571,1) = Z Z Bg(i)_e(w)xi
a€Hecke(w) 0<i€Compatible(a)
for w € 5,.
Again let hl(.ﬂ)(:z:) =1+ am; € l[dCoxg and define
(10) AP @) = s @h @) 1 @)
and
(11) AP (@) = 0P @h 2 @)1 (@)
for integers 1 < ¢ < n and x € R. Then consider the finite product
(12) 6 = Agﬁ (l‘l)Aéﬁ)(iﬁg) . ~A§l’6) (Tn-1) Z &, - Ty € IdCoxg.

weSy

Next let & := m; & and 6FPF := miPF&. It is evident from (9) that

QAS = Z QAjz -m; € InvolModg and é\5FPF = Z QAiz -m, € FixedModg.
z€L, z€IFPF

Proposition 3.2 is inefficient for computing @52 since while & contains (g) factors

hg’@) (), it turns out that any m. can be written in the form m_m,, 74, - - - 74, Where
p < () + () for ng = [2] and ny = [ 241 ]. We can derive an involution version
of Proposition 3.2, however.

LEMMA 4.3. For any integer 1 < i < n and elements x;,...,z,_1,y € R it holds that
n—1
AP N AP @) AD (wi1) - AL (1) H AP @) - T 0 @5 0 p).
J=i+1 Jj=t

Proof. Repeat the proof of [6, Lem. 4.1] with the symbols A;, gj, hy replaced by

AEB ), ﬁgﬂ ), hgf ), and then apply the algebra anti-automorphism of IdCoxg that maps
Ty > Ty—1 to both sides. O

For i > j > 0, define iq; = Tjoi =2 © x; = 23 + =; + Bz, and zje; = ;.
PROPOSITION 4.4. The following identities hold:
(1) We have & = T2 Tl in(in—i) 111 (@ieg):
(2) Ifn is even then QﬁFPF [T HJ —min(i—1,n—4) h§+)J L (Ziwj)-
In part (2), the indices i and j always satisfy ¢ > j > 0 so zig; = z; & ;.

Proof. We first prove part (1). The result is trivial when n = 1 so assume n > 2.
For any 1 < i < n we have mimmi11 = M, s;5,,, = M1T417; and consequently
mlhl(-ﬁ) (x)hg-ﬂ) (y) = mlhg-ﬁ) (y)hgﬂ) (x) for all integers ¢, j and z,y € R. Using this,
one checks that mlAgﬂ)(m) = mlggﬁ)(x), whence

& = mi A () A7 (@2) - A, (w01) = i A (20) A7 (w2) -~ AL, ()

= muh{? (1) A7 (@) A (22) - A (20 ).

Algebraic Combinatorics, Vol. 4 #2 (2021) 285



ERIC MARBERG & BRENDAN PAWLOWSKI

Applying Lemma 4.3 with ¢ = 2 and commuting hgﬁ)(xl) to the right gives
& = mi A (22) AL (w3) - A, (- 2)h” (w1000 (@162) - B, (B1600-1))-

We may assume by induction that

n—3 1
m1 A (22) AL (w3) -+ AP (20—2) = ma [ II 1 (@ eGen)

i=1 j=min(i,n—2—1)

n—2 2
=m [l I ).

=2 j=min(i,n—1)

This gives & = m; H?;Qz H?:min(i,nﬂ') h’gf-)j—l(mi@j) . Z;ll h,(f)(xl@i), and it is not
hard to see that this formula can be transformed by appropriate commutations to
the expression in part (1). For instance, if n = 8 then what needs to be shown is
equivalent to the claim that one can turn the reduced word 3-54-765-76-7-1234567
into 1-32-543-7654-765- 76 - 7 using only relations of the form ij < ji for |i —j| > 1.

The proof of part (2) is similar. Assume n is even and 1 < i < n. If ¢ is odd then
mfPFr; = 0 and mFPFR) (2) = mFPF for all 2 € R. On the other hand, if i is even
and z,y € R then

FPF FPF FPF, (8
my  mmie =my o mmi—1 and my b )(:c)

L)

D () = mPFRP (@)n) (y).

Using these relations repeatedly we deduce that mEPFAZ(ﬂ)(:r) = m'{PFgl(.f_)l (z) for any
odd integer 1 < i < n. By Lemma 4.3, we therefore have

B PF = mfPF A (21) Aa(2) - Anci (1) = mEPF AL (@) AY (22) - AV (2-1)
= mfPFAY (22) A (w3) - - AL (2)
B (21 @ 22)h (@1 ® 23) - B, (21 @ o).
).

From here, the result follows by induction as in the proof of part (1 O

Let N, == {(i,j) € ZxZ:i>7 >0} and N\, := {(4,j) € ZX Z : i > j > 0}. Equip
these sets with the total order defined by (,7) < (k,1) if i <k orif i =k and j > [.
An involution Hecke pipe dream for z € T, (respectively, z € ZFPF) is a finite subset
D of I\, (respectively, N ) such that the word formed by listing the numbers i+ j — 1
as (4,7) runs over D in the order < belongs to InvHecke(z). We write InvDreams(z)
for the set of these subsets.

THEOREM 4.5. If z € Z,, or if n is even and z € Zt°F then
B, = > P T wiay
DelnvDreams(z) (¢,7)€D
where we set Tig; = x; fori >0 and Tq; = x; + x; + Bxsx; fori > j > 0.
When 8 = 0 our result reduces to [8, Thm. 1.5], which was proved in a different

way using somewhat involved recurrences. The methods here give a new and simpler
proof. For generic 3, Theorem 4.5 resolves the symplectic half of [8, Problem 6.9].

Proof. First assume z € Z,,. Part (1) of Proposition 4.4 implies
6, = Z BN_E(Z) Z Liid(ar—ii+1) " " Tiy®(an—in+1)-

a=aj---an €lnvHecke(z) 0<i=(i1<---<in ) ECompatible(a)
i]' éaj <21j Vi

One now checks that the map sending (a,i) to D = {(ij,a; —i; +1) : 1 < j <
£(a)} is a bijection from the pairs indexing this double summation to the elements
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of InvDreams(z). When n is even and z € ZFPF, the same argument using part (2) of
Proposition 4.4 gives the desired formula. O

EXAMPLE 4.6. Suppose n = 4. If y = 35255 = $28382 = (2,4) € Z,, as in Example 4.1,
then the elements of InvDreams(y) are the sets of nonzero positions in the matrices

000 000 000
110}, [to0|, |110],
000 100 100

which are {(2,1),(2,2)}, {(2,1),(3,1)}, and {(2,1),(2,2),(3,1)}. By Theorem 4.5,
63; = («Iz S¥) xl)l‘g + (562 D :El)(l‘g S5 1‘1) + ﬂ(l‘g D 931).1‘2(933 &) 561).

If 2 = s3- 59+ 1FPF . 55 - 53 € ZFPF as in Example 4.1, then InvDreams(z) contains just

o~

one element {(2,1),(3,1)}, and Theorem 4.5 asserts &, = (x2 ® x1)(x3 ® x1).

Acknowledgements. We thank Sergey Fomin for suggesting the problem of finding
analogues of Macdonald’s formulas for Schubert polynomials outside type A.
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