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Principal specializations of Schubert
polynomials in classical types

Eric Marberg & Brendan Pawlowski

Abstract There is a remarkable formula for the principal specialization of a type A Schubert
polynomial as a weighted sum over reduced words. Taking appropriate limits transforms this
to an identity for the backstable Schubert polynomials recently introduced by Lam, Lee, and
Shimozono. This note identifies some analogues of the latter formula for principal specializations
of Schubert polynomials in classical types B, C, and D. We also describe some more general
identities for Grothendieck polynomials. As a related application, we derive a simple proof of
a pipe dream formula for involution Grothendieck polynomials.

1. Introduction
There is a remarkable formula for the principal specialization Sw(1, q, q2, . . . , qn−1) of
a (type A) Schubert polynomial as a weighted sum over reduced words. Originally a
conjecture of Macdonald [11], this identity was first proved algebraically by Fomin and
Stanley [6]. Billey, Holroyd, and Young [2, 16] have recently found the first bijective
proof of Macdonald’s conjecture.

In this note we identify some apparently new analogues of Macdonald’s identity
for the principal specializations of Schubert polynomials in other classical types. Our
methods are based on the algebraic techniques of Fomin and Stanley and will also
lead to a simple proof of (a K-theoretic generalization of) the main result of [8].

To state our main theorems we need to recall a few definitions. Throughout, we
let xi for i ∈ Z be commuting indeterminates. We use the term word to mean a
finite sequence a1a2 · · · ap whose letters belong to some totally ordered alphabet. This
alphabet will usually consist of the integers Z with their usual ordering, and in any
case will always contain (Z, <) as a subposet.

Definition 1.1. A bounded compatible sequence for a word a = a1a2 · · · ap is a
weakly increasing sequence of integers i = (i1 6 i2 6 · · · 6 ip) with the property that

ij < ij+1 whenever aj 6 aj+1 and ij 6 aj whenever 0 < ij .

Let Compatible(a) denote the set of all such sequences. Given i = (i1 6 · · · 6 ip) ∈
Compatible(a), define xi = xi1 · · ·xip and write 0 < i if the numbers i1, . . . , ip are all
positive.
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Let si = (i, i + 1) denote the permutation of Z interchanging i and i + 1. Fix a
positive integer n and let Sn := 〈s1, s2, . . . , sn−1〉 ⊂ SZ := 〈si : i ∈ Z〉. Both Sn and
SZ are Coxeter groups with respect to their given generating sets. A reduced word for
w ∈ SZ is a word a1a2 · · · ap of shortest possible length such that w = sa1sa2 · · · sap

.
Let Reduced(w) denote the set of all such words.

Definition 1.2. The Schubert polynomial of w ∈ Sn is

Sw :=
∑

a∈Reduced(w)

∑
0<i∈Compatible(a)

xi ∈ Z[x1, x2, . . . , xn−1].

Schubert polynomials are often defined inductively using divided difference oper-
ators, following the approach of Lascoux and Schützenberger. The formula that we
have given is [3, Thm. 1.1]. The identity of Macdonald [11] mentioned at the start of
this introduction is as follows.

Theorem 1.3 (Fomin and Stanley [6, Thm. 2.4]). If w ∈ Sn then

Sw(1, q, q2, . . . , qn−1) =
∑

a=a1a2···ap∈Reduced(w)

[a1]q[a2]q · · · [ap]q
[p]q!

qcomaj(a),

where comaj(a) :=
∑
ai<ai+1

i and [a]q := 1−qa

1−q and [p]q! := [p]q · · · [2]q[1]q.

Taking appropriate limits transforms the preceding formula into an identity for the
backstable Schubert polynomials, which may be defined as follows.

Definition 1.4. The backstable Schubert polynomial of w ∈ Sn is
←−
Sw :=

∑
a∈Reduced(w)

∑
i∈Compatible(a)

xi ∈ Z[[. . . , x−1, x0, x1, . . . , xn−1]].

This is the same as the formula for Sw except now i = (i1 6 i2 · · · 6 ip) may
contain non-positive integers. If w ∈ Sn then

←−
Sw(. . . , 0, 0, x1, x2, . . . , xn−1) = Sw,

while
←−
Sw(. . . , x−2, x−1, x0, 0, 0, . . . , 0) is the Stanley symmetric function of w in the

variables xi for i 6 0 [10, Thm. 3.2].
Note that

←−
Sw is usually not a polynomial. These power series were introduced by

Lam, Lee, and Shimozono [10] in connection with Schubert calculus on infinite flag
varieties. They also arise as cohomology classes of degeneracy loci in products of flag
varieties [15].

If F ∈ Z[[. . . , x−1, x0, x1, . . . , xn−1]] is homogeneous then the formal power series
F (xi 7→ qi−1) obtained by setting xi = qi−1 for all integers i < n is well-defined.
The following result is easy to derive from Theorem 1.3 and is also a special case of
Theorem 3.3. In this statement, for a word a = a1a2 · · · ap we write Σa :=

∑p
i=1 ai

and `(a) := p.

Theorem 1.5. If w ∈ Sn then
←−
Sw(xi 7→ qi−1) =

∑
a∈Reduced(w)

qΣa+comaj(a)

(q−1)(q2−1)···(q`(a)−1)
where the right hand expression is interpreted as a Laurent series in q−1.

Example 1.6. Setting xi = qi−1 in the definition of
←−
Sw gives another formula for←−

Sw(xi 7→ qi−1) as a sum over the reduced words for w. The corresponding terms in
these two summations need not agree, however: for a given word a = a1a2 · · · ap ∈
Reduced(w), it can happen that∑

i∈Compatible(a)

q(i1−1)+(i2−1)+···+(ip−1) 6= qΣa+comaj(a)

(q − 1)(q2 − 1) · · · (qp − 1) .
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For example, if w = (1, 2)(3, 4) and a = 1, 3 then
∑

i∈Compatible(a) q
(i1−1)+···+(ip−1) is∑

1>i1<i263
q(i1−1)+(i2−1) ∈ q2 + 2q + 2 + q−1Z[[q−1]]

while qΣa+comaj(a)

(q−1)(q2−1)···(qp−1) = q5

(q−1)(q2−1) expands into the Laurent series

q5(q−1 + q−2 + q−3 + · · · )(q−2 + q−4 + · · · ) ∈ q2 + q + 2 + q−1Z[[q−1]].

For w = (1, 2)(3, 4) there are only two reduced words and one has
←−
S(1,2)(3,4) =←−e 2

1 + (2x1 + x2 + x3)←−e 1 + x2
1 + x1x2 + x1x3

= · · ·+ x2
0 + 2x−1x1 + x−2x2 + x−3x3

+ 2x0x1 + x−1x2 + x−2x3

+ x2
1 + x0x2 + x−1x3

+ x1x2 + x0x3

+ x1x3

where ←−e d is the symmetric function
∑
i1<i2<···<id60 xi1xi2 · · ·xid . One computes

←−
S(1,2)(3,4)(xi 7→ qi−1) = q4

(q − 1)2 = · · ·+ 7q−4 + 6q−3 + 5q−2 + 4q−1 + 3 + 2q + q2

using either Theorem 1.5 or the formula ←−e d(q−1, q−2, . . .) = 1
(q−1)(q2−1)···(qd−1) .

Our first new results are versions of the preceding theorem for Schubert polynomials
in other classical types. We begin with type B/C. Given 0 < i < n, define ti = t−i :=
(i, i + 1)(−i,−i − 1) and t0 := (−1, 1). Define WBC

n := 〈t0, t1, . . . , tn−1〉 to be the
Coxeter group consisting of the permutations w of Z with w(i) = i for |i| > n and
w(−i) = −w(i) for all i ∈ Z.

A signed reduced word of type B for an element w ∈ WBC
n is a word a1a2 · · · ap

with letters in the set {−n+1, . . . ,−1, 0, 1, . . . , n−1} of shortest possible length such
that w = ta1ta2 · · · tap . Let −0 denote a formal symbol distinct from 0 that satisfies
−1 < −0 < 0 < 1 and set t−0 := t0. A signed reduced word of type C for w ∈ WBC

n

is a word a1a2 · · · ap with letters in {−n + 1, . . . ,−1,−0, 0, 1, . . . , n − 1} of shortest
possible length such that w = ta1ta2 · · · tap

. Let Reduced±B(w) and Reduced±C(w) denote
the respective sets of signed reduced words for w.

Definition 1.7. The type B/C Schubert polynomials of w ∈WBC
n are

SB
w :=

∑
a∈Reduced±

B
(w)

i∈Compatible(a)

xi and SC
w :=

∑
a∈Reduced±

C
(w)

i∈Compatible(a)

xi = 2`0(w)SB
w

where `0(w) := |{i ∈ Z : w(i) < 0 < i}|.

Both of the “polynomials” SB
w and SC

w are formal power series in the ring
Z[[. . . , x−1, x0, x1, . . . , xn−1]]. If we substitute xi 7→ zi for i > 0 and xi 7→ x1−i for
i 6 0, then SB

w and SC
w specialize to the Schubert polynomials of types B and C

defined by Billey and Haiman in [1]; compare our definition with [1, Thm. 3].
Let ReducedC(w) for w ∈ WBC

n denote the subset of words in Reduced±C(w) whose
letters all belong to {0, 1, . . . , n− 1}. In Section 2.2 we prove the following analogue
of Theorem 1.5.

Algebraic Combinatorics, Vol. 4 #2 (2021) 275



Eric Marberg & Brendan Pawlowski

Theorem 1.8. If w ∈WBC
n then

SC
w(xi 7→ qi−1) =

∑
a=a1a2···ap∈ReducedC(w)

(qa1 + 1)(qa2 + 1) · · · (qap + 1)
(q − 1)(q2 − 1) · · · (qp − 1) qcomaj(a)

where the right hand expression is interpreted as a Laurent series in q−1.

Example 1.9. If w = (1,−2)(2,−1) ∈WBC
n then the set Reduced±C(w) has 8 elements,

formed by adding arbitrary signs to the letters in a1a2a3 = 0, 1, 0. One can show that
SC

(1,−2)(2,−1) = 4←−e 2
←−e 1 − 4←−e 3

= · · · + 4x−2x
2
−1 + 4x2

−2x0 + 8x−3x−1x0 + 4x−4x
2
0

+ 4x−3x
2
0 + 8x−2x−1x0

+ 4x−2x
2
0 + 4x2

−1x0

+ 4x−1x
2
0

where ←−e d :=
∑
i1<i2<···<id60 xi1xi2 · · ·xid as in Example 1.6. It follows that

SC
(1,−2)(2,−1)(xi 7→ qi−1) = 4q

(q − 1)2(q3 − 1)
= · · ·+ 36q−9 + 28q−8 + 20q−7 + 12q−6 + 8q−5 + 4q−4.

We turn next to type D. For 1 < i < n, let
ri = r−i := (i, i+ 1)(−i,−i− 1) = ti

but define
r1 := (1, 2)(−1,−2) = t1 and r−1 := (1,−2)(−1, 2) = t0t1t0.

Define WD
n := 〈r−1, r1, r2, . . . , rn−1〉 to be the Coxeter group of permutations

w ∈WBC
n for which the number of positive integers i with w(i) < 0 is even. A signed

reduced word for w ∈ WD
n is a word a1a2 · · · ap with letters in the set {−n +

1, . . . ,−2,−1, 1, 2, . . . , n− 1} of shortest possible length such that w = ra1ra2 · · · rap .
Let Reduced±D(w) denote the set of such words.

Definition 1.10. The type D Schubert polynomial of w ∈WD
n is

SD
w =

∑
a∈Reduced±

D
(w)

∑
i∈Compatible(a)

xi ∈ Z[[. . . , x−1, x0, x1, . . . , xn−1]].

If we again substitute xi 7→ zi for i > 0 and xi 7→ x1−i for i 6 0, then our definition
of the power series SD

w specializes to Billey and Haiman’s formula for the Schubert
polynomial of type D given in [1, Thm. 4].

Suppose a = a1a2 · · · ap is a sequence with ai ∈ {±1,±2,±3, . . . ,±(n− 1)}. Define

(1) comajD(a) := |{i : ai > 0}|+
∑

ai≺ai+1

2i

where ≺ is the order −1 ≺ −2 ≺ · · · ≺ −n ≺ 1 ≺ 2 ≺ · · · ≺ n. For example, if
a = a1a2a3a4 = −1,−2, 3, 1 then comajD(a) = 2+(2+4) = 8. We prove the following
in Section 2.3.

Theorem 1.11. If w ∈WD
n then

SD
w(xi 7→ qi−1) =

∑
a=a1a2···ap∈Reduced±

D
(w)

(q|a1|+1)(q|a2| + 1) · · · (q|ap| + 1)
(q2 − 1)(q4 − 1) · · · (q2p − 1) qcomajD(a)

where the right hand expression is interpreted as a Laurent series in q−1.
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Example 1.12. If w = (1,−1)(4,−4) ∈ WD
n then the set Reduced±D(w) has 32 ele-

ments, formed by adding signs to the letters in a1a2a3a4a5a6 = 3, 2, 1, 1, 2, 3 in all
ways that give opposite signs to the two entries with absolute value one. One can
compute that

SD
(1,−1)(4,−4) = x1x2x3

←−
P3 + (x1x2 + x1x3 + x2x3)←−P4 + (x1 + x2 + x3)←−P5 +←−P6

= · · · + x4
0x1x3 + 2x−1x

3
0x2x3 + 2x2

−1x0x1x2x3 + 2x−2x
2
0x1x2x3

+ x4
0x2x3 + 2x−1x

2
0x1x2x3

+ x3
0x1x2x3

where←−Pd for d > 0 is the Schur P -function 1
2
∑d
a=0 ea(x0, x−1, . . . )hd−a(x0, x−1, . . . ).

Using the formula ←−Pd(q−1, q−2, . . .) = (q+1)(q2+1)···(qd−1+1)
(q−1)(q2−1)···(qd−1) one can check that

SD
(1,−1)(4,−4)(xi 7→ qi−1) = q12(q2 + 1)

(q − 1)3(q3 − 1)(q5 − 1)
= · · ·+ 46q−5 + 27q−4 + 15q−3 + 7q−2 + 3q−1 + 1,

which agrees with Theorem 1.11.

Setting q = 1 in Theorem 1.5 leads to surprising enumerative formulas involving
reduced words, compatible sequences, and plane partitions [5]. By contrast, the power
series

←−
Sw,SB

w,SC
w, andSD

w do not converge upon specializing xi 7→ 1 for all i. It would
be interesting to find variations of our formulas with clearer enumerative content.

The second half of this note contains a few other related results. In Section 3,
we extend Theorems 1.5, 1.8, and 1.11 to identities for Grothendieck polynomials.
Our proofs of these formulas are fairly straightforward adaptations of the algebraic
methods in [6, 9]. It is an interesting open problem to find bijective proofs of these
identities along the lines of [2].

Our approach has one other notable application, which we discuss in Section 4.
There, we develop a simple alternate proof of the main result of [8], which gives a
pipe dream formula for certain involution Schubert polynomials. We are able to prove
a more general K-theoretic formula, partially resolving an open question from [8, § 6].

2. Principal specializations of Schubert polynomials
This section contains our proofs of Theorems 1.8 and 1.11. Throughout, we fix a
positive integer n and let R be an arbitrary commutative ring containing the ring of
formal power series Z[[xi : i < n]].

2.1. Nil-Coxeter algebras. The algebra introduced in this section figures promi-
nently in [6] and in several of our arguments. Let (W,S) be a Coxeter system with
length function `. Let NilCox = NilCox(W ) be the R-module of all formal R-linear
combinations of the symbols uw for w ∈ W . This module has a unique R-algebra
structure with bilinear multiplication satisfying

uvuw =
{
uvw if `(vw) = `(v) + `(w),
0 if `(vw) < `(v) + `(w),

for v, w ∈W .

Following [6, § 2], we refer to NilCox as the nil-Coxeter algebra of (W,S). Choose
x, y ∈ R. Given s ∈ S, define hs(x) := 1 + xus ∈ NilCox. One checks that if s, t ∈ S
and st = ts then

hs(x)hs(y) = hs(x+ y) and hs(x)ht(y) = ht(y)hs(x).
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We will also need the following general identity, which is equivalent to [6, Lem. 5.4]
after some minor changes of variables:

Lemma 2.1 ([6, Lem. 5.4]). Let t1, t2, . . . , tN be some elements of an R-algebra with
identity 1, and suppose q, z1, z2, . . . zN are formal variables. Then

0∏
j=−∞

N∏
i=1

(1+qj−1ziti) =
∑
p>0

∑
a1,a2,...,ap

za1za2 · · · zap

(q − 1)(q2 − 1) · · · (qp − 1)q
comaj(a)ta1 ta2 · · · tap

where comaj(a) :=
∑
ai<ai+1

i and the coefficients on the right are viewed as Laurent
series in q−1.

2.2. Type B/C. Here, let NilCox = NilCox(WBC
n ) denote the nil-Coxeter algebra

of type B/C Coxeter system (W,S) = (WBC
n , {t0, t1, . . . , tn−1}) and define hi(x) :=

1 + xuti ∈ NilCox for integers −n < i < n and x ∈ R. Recall that ti = t−i so we
always have hi(x) = h−i(x). Let

(2)
Ai(x) := hn−1(x)hn−2(x) · · ·hi(x),
B(x) := hn−1(x) · · ·h1(x)h0(x)h−1(x) · · ·h−n+1(x),
C(x) := hn−1(x) · · ·h1(x)h0(x)h0(x)h−1(x) · · ·h−n+1(x),

and note that h0(x)h0(x) = h0(2x). Finally consider the infinite products in NilCox
given by

(3) SB :=
0∏

i=−∞
B(xi)

n−1∏
i=1

Ai(xi) and SC :=
0∏

i=−∞
C(xi)

n−1∏
i=1

Ai(xi).

It straightforward to see that SB =
∑
w∈W BC

n
SB
w · uw and SC =

∑
w∈W BC

n
SC
w · uw.

Less trivially:

Proposition 2.2. It holds that

SB =
0∏

j=−∞

(
h0(xj)

n−1∏
i=1

hi(xi+j + xj)
)

and SC =
0∏

j=−∞

n−1∏
i=0

hi(xi+j + xj).

Proof. We will just prove the formula for SC since the other case is similar. Let

Ãi(x) := hi(x)hi+1(x) · · ·hn−1(x).

Since Ai(x) = Ai+1(x)hi(x) and C(x) = A1(x)h0(x+ x)Ã1(x), we have

SC =
−1∏

i=−∞
C(xi) ·A1(x0)h0(x0 + x0)Ã1(x0)A1(x1)A2(x2) · · ·An−1(xn−1).

The elements hi−2(x), Ai(y), and Ãi(z) all commute by [6, Lem. 4.1]. Using this fact
and the identities Ai(x) = Ai+1(x)hi(x) and Ãi(x) = hi(x)Ãi+1(x), one can show

h0(x0 + x0)Ã1(x0)A1(x1)A2(x2) · · ·An−1(xn−1) =
n−1∏
i=2

Ai(xi−1) ·
n−1∏
i=0

hi(xi + x0).

Substituting this into our formula above gives SC = SC(xi 7→ xi−1)
∏n−1
i=0 hi(xi +x0)

so by induction we have SC = SC(xi 7→ xi−N )
∏0
j=−N+1

∏n−1
i=0 hi(xi+j + xj) for all

N > 0. But it is easy to see that limN→∞SC(xi 7→ xi−N ) = 1 as a limit of power
series, so the result follows by sending N →∞. �

We can now prove Theorem 1.8.
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Proof of Theorem 1.8. To obtain the desired formula, set xi = qi−1 in Proposition 2.2,
apply Lemma 2.1 with N = n, zi = 1 + qi−1, and ti = uti−1 , and then extract the
coefficient of uw. �

2.3. Type D. Now, let NilCox = NilCox(WD
n ) denote the nil-Coxeter algebra of

(W,S) = (WD
n , {r−1, r1, . . . , rn−1}) and define hi(x) := 1 + xuti ∈ NilCox for all

i ∈ {±1,±2, . . . ,±(n− 1)} and x ∈ R. Let

(4)

Ai(x) := hn−1(x)hn−2(x) · · ·hi(x),

Ãi(x) := hi(x)hi+1(x) · · ·hn−1(x),
D(x) := hn−1(x) · · ·h1(x)h−1(x) · · ·h−n+1(x).

The Coxeter group WD
n has a unique automorphism w 7→ w∗ that maps ri 7→ r−i for

1 6 i < n. This map extends by linearity to an R-algebra automorphism of NilCox
with u∗w := uw∗ . We have Ai(x)∗ = Ai(x) for 1 < i < n and D(x)∗ = D(x), while
A1(x)∗ = hn−1(x)hn−2(x) · · ·h2(x)h−1(x). Consider the infinite products in NilCox

(5) SD :=
0∏

i=−∞
D(xi)

n−1∏
i=1

Ai(xi) and (SD)∗ :=
0∏

i=−∞
D(xi)

n−1∏
i=1

Ai(xi)∗.

We have SD =
∑
w∈WD

n
SD
w · uw and (SD)∗ =

∑
w∈WD

n
SD
w · uw∗ . In addition:

Proposition 2.3. It holds that

SD =
0∏

j=−∞

(
n−1∏
i=1

h−i(xi+2j−1 + x2j−1)
n−1∏
i=1

hi(xi+2j + x2j)
)
.

Proof. Since Ai(x) = Ai+1(x)hi(x) and D(x) = A1(x)∗Ã1(x), we have

SD =
−1∏

i=−∞
D(xi) ·A1(x0)∗Ã1(x0)A1(x1)A2(x2) · · ·An−1(xn−1).

Repeating the argument in the proof of Proposition 2.2, we deduce that SD =
(SD)∗(xi 7→ xi−1)

∏n−1
i=1 hi(xi+x0). An analogous identity holds for (SD)∗. Alternat-

ing these formulas gives

SD = SD(xi 7→ xi−2N )
0∏

j=−N+1

(
n−1∏
i=1

h−i(xi+2j−1 + x2j−1)
n−1∏
i=1

hi(xi+2j + x2j)
)

for all N > 0. It is again easy to see that limN→∞SD(xi 7→ xi−2N ) = 1 as a limit of
formal power series, so the result follows by sending N →∞. �

We can now also prove Theorem 1.11.

Proof of Theorem 1.11. By Proposition 2.3 we have

SD(xi 7→ qi−1)

=
0∏

j=−∞

(
n−1∏
i=1

(
1+q2(j−1) ·(1+qi) ·ur−i

)
·
n−1∏
i=1

(
1 + q2(j−1) ·q(1+qi) ·uri

))
.

To get the desired expression for SD
w, apply Lemma 2.1 with q replaced by q2 and

N = 2n−2 to the right side of the preceding identity, using the parameters zi = 1+qi,
zn−1+i = q(1 + qi), ti = ur−i

, and tn−1+i = uri
for 1 6 i < n. Then extract the

coefficient of uw. �
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3. Principal specializations of Grothendieck polynomials
In this section we describe some extensions of Theorems 1.5, 1.8, and 1.11 for
Grothendieck polynomials in classical types. The identities proved here are more
general but also more technical than the formulas sketched in the introduction.

3.1. Id-Coxeter algebras. Again let (W,S) be an arbitrary Coxeter system with
length function `. For the results in this section, we work in a generalization of the
algebra NilCox(W ). Recall that R is an arbitrary commutative ring containing Z[[xi :
i < n]]. From this point on, we fix an element β ∈ R.

Let IdCoxβ = IdCoxβ(W ) be the R-module of all formal R-linear combinations
of the symbols πw for w ∈ W . This module has a unique R-algebra structure with
bilinear multiplication satisfying

πvπw = πvw if `(vw) = `(v) + `(w) and π2
s = βπs

for v, w ∈ W and s ∈ S [9, Def. 1], which we refer to as the id-Coxeter algebra of
(W,S). For x, y ∈ R and s ∈ S, define

(6) x⊕ y := x+ y + βxy and h(β)
s (x) := 1 + xπs.

Then h(β)
s (x)h(β)

s (y) = h
(β)
s (x⊕y), and if st = ts then h(β)

s (x)h(β)
t (y) = h

(β)
t (y)h(β)

s (x)
[9, Lem. 1].

3.2. Type A. Let ←−Sn := 〈si : i < n〉 be the Coxeter group of permutations w ∈ SZ

with w(i) = i for all i > n. In this section we write IdCoxβ = IdCoxβ(←−Sn) and set
πi := πsi

∈ IdCoxβ for integers i < n. Define Hecke(w) for w ∈ ←−Sn to be the set of
words a1a2 · · · aN such that πw = βN−`(w)πa1πa2 · · ·πaN

. Recall the set Compatible(a)
from Definition 1.1.

Definition 3.1. The backstable Grothendieck polynomial of w ∈ Sn (
←−
Sn is

←−
Gw :=

∑
a∈Hecke(w)

∑
i∈Compatible(a)

β`(i)−`(w)xi ∈ Z[β][[. . . , x−1, x0, x1, . . . , xn−1]].

The function Gw :=
←−
Gw(. . . , 0, 0, x1, x2, . . . , xn−1) is the ordinary Grothendieck

polynomial of w ∈ Sn. The power series Gw :=
←−
Gw(. . . , x3, x2, x1, 0, 0, . . . , 0) given by

setting xi 7→ 0 for i > 0 and xi 7→ x1−i for i 6 0 is a symmetric function in the xi
variables, which is usually called the stable Grothendieck polynomial of w ∈ Sn.

Specializing β 7→ 0 transforms
←−
Gw 7→

←−
Sw from Section 1. The Grothendieck poly-

nomials Gw are closely related to the K-theory of flag varieties and Grassmanni-
ans [4, 13]. We do not know of a similar geometric interpretation for the backstable
Grothendieck polynomials

←−
Gw.

For i < n and x ∈ R, let

h
(β)
i (x) := 1 + xπi and A

(β)
i (x) := h

(β)
n−1(x)h(β)

n−2(x) · · ·h(β)
i (x).

Define

(7)
←−
G := · · ·A(β)

n−3(xn−3)A(β)
n−2(xn−2)A(β)

n−1(xn−1) =
n−1∏
i=−∞

A
(β)
i (xi) ∈ IdCoxβ .

If w ∈ Sn then the coefficient of πw in this expression is
←−
Gw.

Proposition 3.2. It holds that
←−
G =

∏0
j=−∞

∏n−1
i=−∞ h

(β)
i (xi+j).
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Proof. We have
←−
G = · · ·A(β)

1 (x0)h(β)
0 (x0)A(β)

2 (x1)h(β)
1 (x1) · · ·A(β)

n−1(xn−2)h(β)
n−1(xn−1)

by definition. As h
(β)
i (x) and A

(β)
i+2(y) commute, it follows that

←−
G =

←−
G(xi 7→

xi−1)
∏n−1
i=−∞ h

(β)
i (xi) so by induction

←−
G=
←−
G(xi 7→xi−N )

∏0
j=−N+1

∏n−1
i=−∞ h

(β)
i (xi+j)

for all N > 0. But we have limN→∞
←−
G(xi 7→ xi−N ) = 1 as a limit of formal power

series, so the result follows by sending N →∞. �

We can now prove the following generalization of Theorem 1.5.

Theorem 3.3. If w ∈ Sn (
←−
Sn then

←−
Gw(xi 7→ qi−1) =

∑
a∈Hecke(w)

β`(a)−`(w)

(q − 1)(q2 − 1) · · · (q`(a) − 1)
qΣa+comaj(a)

where the right hand expression is interpreted as a Laurent series in q−1.

Proof. If w ∈ Sn then the coefficient of πw in
←−
G is the same as the coefficient of πw

in the truncated product
∏0
j=−∞

∏n−1
i=1 h

(β)
i (xi+j). This coefficient is

←−
Gw, and the

theorem follows by applying Lemma 2.1 with N = n− 1 and ziti = qiπsi
to the latter

expression. �

There are Grothendieck polynomials in the other classical types [9] which generalize
SB
w, SC

w, and SD
w in the same way that

←−
Gw generalizes

←−
Sw. We discuss these formal

power series next.

3.3. Type B/C. In this section let IdCoxβ = IdCoxβ(WBC
n ) and write πi := πti ∈

IdCoxβ for −n < i < n. Given a permutation w ∈ WBC
n , define Hecke±B(w)

and Hecke±C(w) to be the sets of words a1a2 · · · aN , with letters in {−n +
1, . . . ,−1, 0, 1, . . . , n − 1} and {−n + 1 < · · · < −1 < −0 < 0 < 1 < · · · < n − 1},
respectively, such that πw = βN−`(w)πa1πa2 · · ·πaN

∈ IdCoxβ , where `(w) denotes
the usual Coxeter length of w and π−0 := π0 ∈ IdCoxβ . Recall that we view −0 as a
symbol distinct from 0.

Definition 3.4. The type B/C Grothendieck polynomials of w ∈WBC
n are

GB
w :=

∑
a∈Hecke±

B
(w)

i∈Compatible(a)

β`(i)−`(w)xi and GC
w :=

∑
a∈Hecke±

C
(w)

i∈Compatible(a)

β`(i)−`(w)xi.

We may consider the finite sums

GB :=
∑

w∈W BC
n

GB
w · πw ∈ IdCoxβ(WBC

n ) and GC :=
∑

w∈W BC
n

GC
w · πw ∈ IdCoxβ(WBC

n ).

Define A(β)
i (x), B(β)(x), and C(β)(x) as in (2) but with hi(x) replaced by

h
(β)
i (x) := 1 + xπi ∈ IdCoxβ(WBC

n ) for −n < i < n and x ∈ R.

Then GB and GC are given by the formulas in (3) with Ai, B, C replaced by A(β)
i ,

B(β), C(β). Comparing with [9, Def. 9] shows that GB
w and GC

w are obtained from
Kirillov and Naruse’s double Grothendieck polynomials GB

w(a, b;x) and GC
w(a, b;x) by

setting ai 7→ xi, bi 7→ 0, and xi 7→ x1−i.

Proposition 3.5. It holds that

GB =
0∏

j=−∞

(
h

(β)
0 (xj)

n−1∏
i=1

h
(β)
i (xi+j ⊕ xj)

)
and GC =

0∏
j=−∞

n−1∏
i=0

h
(β)
i (xi+j ⊕ xj).
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Proof. Since A
(β)
i (x) commutes with Ã

(β)
i (x) := h

(β)
i (x)h(β)

i+1(x) · · ·h(β)
n−1(x) by [9,

Lem. 3], the result follows by the same proof as Proposition 2.2, mutatis mutandis. �

Given a word a = a1a2 · · · ap with ai ∈ {−n+ 1 < · · · < −1 < −0 < 0 < 1 < · · · <
n− 1}, let I(a) be the set of indices i ∈ [p] with ai ∈ {1, 2, . . . , n− 1} and define

(8) ΣBC(a) :=
∑
i∈I(a)

ai and comajBC(a) :=
∑

ai≺ai+1

i

where ≺ is the order −0 ≺ 0 ≺ −1 ≺ 1 ≺ −2 ≺ 2 ≺ . . . . For example, if a =
−1, 1,−2, 1 then ΣBC(a) = 1 + 1 = 2 and comajBC(a) = 1 + 2 = 3.

Theorem 3.6. If w ∈WBC
n then the following identities hold:

(1) GB
w(xi 7→ qi−1) =

∑
a∈Hecke±

B
(w)

β`(a)−`(w)

(q−1)(q2−1)···(q`(a)−1)q
ΣBC(a)+comajBC(a).

(2) GC
w(xi 7→ qi−1) =

∑
a∈Hecke±

C
(w)

β`(a)−`(w)

(q−1)(q2−1)···(q`(a)−1)q
ΣBC(a)+comajBC(a).

The right hand expressions in both parts are interpreted as Laurent series in q−1.

The second identity reduces to Theorem 1.8 when β = 0 since the sum∑
a q

ΣBC(a)+comajBC(a) over all words a = a1a2 · · · ap ∈ Reduced±C(w) with the same un-
signed form is exactly the product (q|a1|+1)(q|a2|+1) · · · (q|ap|+1)qcomaj(|a1||a2|···|ap|).

Proof. Part (1) is similar so we just prove (2). As h(β)
i (xi+j⊕xj) = h

(β)
i (xj)h(β)

i (xi+j),
we have

GC(xi 7→ qi−1) =
0∏

j=−∞

n−1∏
i=0

(1 + qj−1 · πi)(1 + qj−1 · qi · πi)

by Proposition 3.5. The identity for GC
w follows by extracting the coefficient of

πw from the right side after applying Lemma 2.1 with N = 2n and with the pa-
rameters z1, z2, . . . , z2n and t1, t2, . . . , t2n replaced by 1, 1, 1, q, 1, q2, . . . , 1, qn−1 and
π0, π0, π1, π1, . . . , πn−1, πn−1, respectively. �

3.4. Type D. In this section let IdCoxβ = IdCoxβ(WD
n ) and πi := πri

∈ IdCoxβ . Given
w ∈ WD

n , let Hecke±D(w) be the set of words a1a2 · · · aN with letters in [±(n− 1)] :=
{±1,±2, . . . ,±(n − 1)} such that πw = βN−`(w)πa1πa2 · · ·πaN

∈ IdCoxβ , where `(w)
is the usual Coxeter length.

Definition 3.7. The type D Grothendieck polynomial of w ∈WD
n is

GD
w :=

∑
a∈Hecke±

D
(w)

∑
i∈Compatible(a)

β`(i)−`(w)xi.

We consider the sum

GD :=
∑
w∈WD

n

GD
w · πw ∈ IdCoxβ(WD

n ).

If we define A(β)
i (x) and D(β)(x) as in (4) but with hi(x) replaced by

h
(β)
i (x) := 1 + xπi ∈ IdCoxβ(WD

n ) for i ∈ [±(n− 1)] and x ∈ R,

then GD is given by the formula in (5) with Ai and D replaced by A(β)
i and D(β).

Comparing with [9, Def. 9] shows that GD
w is obtained from Kirillov and Naruse’s

double Grothendieck polynomial GD
w(a, b;x) by making the substitutions ai 7→ xi,

bi 7→ 0, and xi 7→ x1−i.
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Proposition 3.8. It holds that

GD =
0∏

j=−∞

(
n−1∏
i=1

h
(β)
−i (xi+2j−1 ⊕ x2j−1)

n−1∏
i=1

h
(β)
i (xi+2j ⊕ x2j)

)
.

Proof. Similar to Proposition 3.5, the result follows by repeating the proof of Propo-
sition 2.3 after adding “(β)” superscripts to all relevant symbols and substituting
h

(β)
i (x)h(β)

i (y) = h
(β)
i (x⊕ y) wherever the identity hi(x)hi(y) = hi(x+ y) is used. �

To state an analogue of Theorem 1.11 for GD
w, we consider the ordered alphabet

{−1′ ≺ −1 ≺ −2′ ≺ −2 ≺ · · · ≺ −n′ ≺ −n ≺ 1′ ≺ 1 ≺ 2′ ≺ 2 ≺ · · · ≺ n′ ≺ n}.
If w ∈WD

n then let PrimedHecke±D(w) denote the set of words in this alphabet which
become elements of Hecke±D(w) when all primes are removed from its letters. Given
such a word a = a1a2 · · · ap, let J(a) be the set of indices i ∈ [p] for which ai is
unprimed, and define

ΣD(a) :=
∑
i∈J(a)

|ai| and comajD(a) := |{i : ai ∈ {1′, 1, 2′, 2, . . . }}|+
∑

ai≺ai+1

2i.

For example, if a = 2′,−1′,−1,−3, 2 then ΣD(a) = 1 + 3 + 2 = 6 and comajD(a) =
2 + (4 + 6 + 8) = 20.

Theorem 3.9. If w ∈WD
n then

GD
w(xi 7→ qi−1) =

∑
a∈PrimedHecke±

D
(w)

β`(a)−`(w)

(q2 − 1)(q4 − 1) · · · (q2`(a) − 1)
qΣD(a)+comajD(a)

where the right hand expression is interpreted as a Laurent series in q−1.

As with Theorem 3.6, this identity reduces to Theorem 1.11 when β = 0.

Proof. The proof is similar to Theorem 3.6. Proposition 3.8 implies that GD(xi 7→
qi−1) is

0∏
j=−∞

(
n−1∏
i=1

(1 + q2(j−1) · π−i)(1 + q2(j−1) · qi · π−i)

n−1∏
i=1

(1 + q2(j−1) · q · πi)(1 + q2(j−1) · qi+1 · πi)
)
.

The identity for GD
w follows by extracting the coefficient of πw from this expres-

sion after applying Lemma 2.1 with q replaced by q2 and with N = 4n − 4.
When applying the lemma, we set the parameters z1, z2, . . . , z2n−2 (respectively,
z2n−1, z2n, . . . , z4n−4) to 1, q, 1, q2, 1, q3 . . . (respectively, q, q2, q, q3, q, q4 . . . ), while
taking t1, t2, . . . , t2n−2 (respectively, t2n−1, t2n, . . . , t4n−4) to be π−1, π−1, π−2, π−2, . . .
(respectively, π1, π1, π2, π2, . . . ). �

4. Involution Grothendieck polynomials
This final section is something of a digression. Here, we reuse the techniques intro-
duced above to give a simple proof of a new formula for certain involution Grothendieck
polynomials.

In this section, we let IdCoxβ = IdCoxβ(Sn) be the id-Coxeter algebra for the finite
Coxeter system (W,S) = (Sn, {s1, s2, . . . , sn−1}), and write πi := πsi

∈ IdCoxβ . Let

In :=
{
w ∈ Sn : w = w−1} and IFPF

n :=
{
w−11FPFw : w ∈ Sn

}
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where 1FPF = · · · (1, 2)(3, 4)(5, 6) · · · denotes the permutation of Z mapping i 7→
i − (−1)i. The sets In and IFPF

n are always disjoint, although when n is even the
elements of IFPF

n are naturally in bijection with the fixed-point-free elements of In.
Let InvolModβ and FixedModβ denote the free R-modules consisting of all R-linear

combinations of the symbols mz for z ∈ In and z ∈ IFPF
n , respectively. These sets

have unique right IdCoxβ-module structures (see [12, § 1.2 and § 1.3]) satisfying, for
each integer 1 6 i < n,

mzπi =


mzsi

if z(i) < z(i+ 1) and zsi = siz,

msizsi
if z(i) < z(i+ 1) and zsi 6= siz,

βmz if z(i) > z(i+ 1),
for z ∈ In

and

mzπi =


msizsi if z(i) < z(i+ 1),
βmz if i+ 1 6= z(i) > z(i+ 1) 6= i,

0 if i+ 1 = z(i) > z(i+ 1) = i,

for z ∈ IFPF
n .

An involution Hecke word for z ∈ In is a word a1a2 · · · ap such that

m1πa1πa2 · · ·πap = βNmz ∈ InvolModβ for some integer N > 0.

To avoid excessive subscripts, define

mFPF
1 := m1FPF ∈ FixedModβ .

An involution Hecke word for z ∈ IFPF
n is a word a1a2 · · · ap such that

mFPF
1 πa1πa2 · · ·πap

= βNmz ∈ FixedModβ for some integer N > 0,

assuming βN 6= 0 for N > 0. Neither of these definitions depends on β,
but in the fixed-point-free case we wish to exclude words a1a2 · · · ap for which
z := sai−1 · · · sa2sa11FPFsa1sa2 . . . sai−1 has ai + 1 = z(ai) > z(ai + 1) = ai for some i.

Let InvHecke(z) denote the set of involution Hecke words for an element z in In or
IFPF
n . This set was denoted as either HO(z) for z ∈ In or HSp(z) for z ∈ IFPF

n in [12].
Also define ̂̀(z) = min{`(a) : a ∈ InvHecke(z)}.
For an explicit formula for ̂̀, see [12, Eq. (5.1)].

Example 4.1. If y = s3s2s3 = s2s3s2 = (2, 4) ∈ In, then InvHecke(y) is the set of all
finite words on the alphabet {2, 3} in which 2 and 3 both appear. If w = (2, 3, 4) =
s2s3 ∈ Sn and z = w−11FPFw = · · · (−3,−2)(−1, 0)(1, 4)(2, 3)(5, 6)(7, 8) · · · ∈ IFPF

n ,
then InvHecke(z) is the set of words obtained by prepending 2 to a nonempty word
on {1, 3}. In either case ̂̀(y) = ̂̀(z) = 2.

Our final theorem concerns these analogues of Gw:

Definition 4.2. The involution Grothendieck polynomial of z ∈ In t IFPF
n is

Ĝz :=
∑

a∈InvHecke(z)

∑
0<i∈Compatible(a)

β`(i)−̂̀(z)xi ∈ Z[β][x1, x2, . . . , xn−1].

If n is even and z ∈ IFPF
n then Ĝz coincides with the symplectic Grothendieck

polynomials GSp
z studied in [13, 14]. The paper [13] also introduces certain orthogonal

Grothendieck polynomials GO
z indexed by z ∈ In, but these are generally not the same

as Ĝz. However, Ĝz does specialize when β = 0 to both kinds of involution Schubert
polynomials Ŝz and ŜFPF

z considered in [7, 8].
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Because InvolModβ and FixedModβ are IdCoxβ-modules, there exists for each z ∈
In t IFPF

n a set HeckeAtoms(z) ⊂ Sn (see [12, § 2.1]) such that

(9) InvHecke(z) =
⊔

w∈HeckeAtoms(z)

Hecke(w) and Ĝz =
∑

w∈HeckeAtoms(z)

β`(w)−̂̀(z)Gw
where

Gw :=
←−
Gw(. . . , 0, 0, x1, x2, . . . , xn−1) =

∑
a∈Hecke(w)

∑
0<i∈Compatible(a)

β`(i)−`(w)xi

for w ∈ Sn.
Again let h(β)

i (x) := 1 + xπi ∈ IdCoxβ and define

(10) A
(β)
i (x) := h

(β)
n−1(x)h(β)

n−2(x) · · ·h(β)
i (x)

and
(11) Ã

(β)
i (x) := h

(β)
i (x)h(β)

i+1(x) · · ·h(β)
n−1(x)

for integers 1 6 i < n and x ∈ R. Then consider the finite product

(12) G := A
(β)
1 (x1)A(β)

2 (x2) · · ·A(β)
n−1(xn−1) =

∑
w∈Sn

Gw · πw ∈ IdCoxβ .

Next let Ĝ := m1G and ĜFPF := mFPF
1 G. It is evident from (9) that

Ĝ =
∑
z∈In

Ĝz ·mz ∈ InvolModβ and ĜFPF =
∑
z∈IFPF

n

Ĝz ·mz ∈ FixedModβ .

Proposition 3.2 is inefficient for computing Ĝz since while G contains
(
n
2
)
factors

h
(β)
i (xi), it turns out that any mz can be written in the form mzπa1πa2 · · ·πap

where
p 6

(
n1
2
)

+
(
n2
2
)
for n1 = dn+1

2 e and n2 = bn+1
2 c. We can derive an involution version

of Proposition 3.2, however.

Lemma 4.3. For any integer 1 6 i < n and elements xi, . . . , xn−1, y ∈ R it holds that

Ã
(β)
i (y)A(β)

i (xi)A(β)
i+1(xi+1) · · ·A(β)

n−1(xn−1) =
n−1∏
j=i+1

A
(β)
j (xj−1) ·

n−1∏
j=i

h
(β)
j (xj ⊕ y).

Proof. Repeat the proof of [6, Lem. 4.1] with the symbols Ai, Ãj , hk replaced by
A

(β)
i , Ã(β)

j , h(β)
k , and then apply the algebra anti-automorphism of IdCoxβ that maps

πw 7→ πw−1 to both sides. �

For i > j > 0, define xi⊕j = xj⊕i := xi ⊕ xj = xi + xj + βxixj and xj⊕j := xj .

Proposition 4.4. The following identities hold:
(1) We have Ĝ =

∏n−1
i=1

∏1
j=min(i,n−i) h

(β)
i+j−1(xi⊕j).

(2) If n is even then ĜFPF =
∏n−1
i=2

∏1
j=min(i−1,n−i) h

(β)
i+j−1(xi⊕j).

In part (2), the indices i and j always satisfy i > j > 0 so xi⊕j = xi ⊕ xj .

Proof. We first prove part (1). The result is trivial when n = 1 so assume n > 2.
For any 1 6 i < n we have m1πiπi+1 = msi+1sisi+1 = m1πi+1πi and consequently
m1h

(β)
i (x)h(β)

j (y) = m1h
(β)
j (y)h(β)

i (x) for all integers i, j and x, y ∈ R. Using this,
one checks that m1A

(β)
1 (x) = m1Ã

(β)
1 (x), whence

Ĝ = m1A
(β)
1 (x1)A(β)

2 (x2) · · ·A(β)
n−1(xn−1) = m1Ã

(β)
1 (x1)A(β)

2 (x2) · · ·A(β)
n−1(xn−1)

= m1h
(β)
1 (x1)Ã(β)

2 (x1)A(β)
2 (x2) · · ·A(β)

n−1(xn−1).
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Applying Lemma 4.3 with i = 2 and commuting h(β)
1 (x1) to the right gives

Ĝ = m1A
(β)
3 (x2)A(β)

4 (x3) · · ·A(β)
n−1(xn−2)h(β)

1 (x1⊕1)h(β)
2 (x1⊕2) · · ·h(β)

n−1(x1⊕(n−1)).
We may assume by induction that

m1A
(β)
3 (x2)A(β)

4 (x3) · · ·A(β)
n−1(xn−2) = m1

n−3∏
i=1

1∏
j=min(i,n−2−i)

h
(β)
i+j+1(x(i+1)⊕(j+1))

= m1

n−2∏
i=2

2∏
j=min(i,n−i)

h
(β)
i+j−1(xi⊕j).

This gives Ĝ = m1
∏n−2
i=2

∏2
j=min(i,n−i) h

(β)
i+j−1(xi⊕j) ·

∏n−1
k=1 h

(β)
k (x1⊕i), and it is not

hard to see that this formula can be transformed by appropriate commutations to
the expression in part (1). For instance, if n = 8 then what needs to be shown is
equivalent to the claim that one can turn the reduced word 3 · 54 · 765 · 76 · 7 · 1234567
into 1 ·32 ·543 ·7654 ·765 ·76 ·7 using only relations of the form ij ↔ ji for |i− j| > 1.

The proof of part (2) is similar. Assume n is even and 1 6 i < n. If i is odd then
mFPF

1 πi = 0 and mFPF
1 h

(β)
i (x) = mFPF

1 for all x ∈ R. On the other hand, if i is even
and x, y ∈ R then

mFPF
1 πiπi+1 = mFPF

1 πiπi−1 and mFPF
1 h

(β)
i (x)h(β)

i+1(y) = mFPF
1 h

(β)
i (x)h(β)

i−1(y).

Using these relations repeatedly we deduce that mFPF
1 A

(β)
i (x) = mFPF

1 Ã
(β)
i+1(x) for any

odd integer 1 6 i < n. By Lemma 4.3, we therefore have

ĜFPF = mFPF
1 A1(x1)A2(x2) · · ·An−1(xn−1) = mFPF

1 Ã
(β)
2 (x1)A(β)

2 (x2) · · ·A(β)
n−1(xn−1)

= mFPF
1 A

(β)
3 (x2)A(β)

4 (x3) · · ·A(β)
n−1(xn−2)

· h(β)
2 (x1 ⊕ x2)h(β)

3 (x1 ⊕ x3) · · ·h(β)
n−1(x1 ⊕ xn−1).

From here, the result follows by induction as in the proof of part (1). �

Let n := {(i, j) ∈ Z×Z : i > j > 0} and 6=
n := {(i, j) ∈ Z×Z : i > j > 0}. Equip

these sets with the total order defined by (i, j) ≺ (k, l) if i < k or if i = k and j > l.
An involution Hecke pipe dream for z ∈ In (respectively, z ∈ IFPF

n ) is a finite subset
D of n (respectively, 6=n) such that the word formed by listing the numbers i+ j−1
as (i, j) runs over D in the order ≺ belongs to InvHecke(z). We write InvDreams(z)
for the set of these subsets.

Theorem 4.5. If z ∈ In or if n is even and z ∈ IFPF
n then

Ĝz =
∑

D∈InvDreams(z)

β|D|−̂̀(z) ∏
(i,j)∈D

xi⊕j

where we set xi⊕i := xi for i > 0 and xi⊕j := xi + xj + βxixj for i > j > 0.

When β = 0 our result reduces to [8, Thm. 1.5], which was proved in a different
way using somewhat involved recurrences. The methods here give a new and simpler
proof. For generic β, Theorem 4.5 resolves the symplectic half of [8, Problem 6.9].

Proof. First assume z ∈ In. Part (1) of Proposition 4.4 implies

Ĝz =
∑

a=a1···aN∈InvHecke(z)

βN−̂̀(z) ∑
0<i=(i16···6iN )∈Compatible(a)

ij6aj<2ij ∀j

xi1⊕(a1−i1+1) · · ·xiN⊕(aN−iN +1).

One now checks that the map sending (a, i) to D = {(ij , aj − ij + 1) : 1 6 j 6
`(a)} is a bijection from the pairs indexing this double summation to the elements
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of InvDreams(z). When n is even and z ∈ IFPF
n , the same argument using part (2) of

Proposition 4.4 gives the desired formula. �

Example 4.6. Suppose n = 4. If y = s3s2s3 = s2s3s2 = (2, 4) ∈ In as in Example 4.1,
then the elements of InvDreams(y) are the sets of nonzero positions in the matrices0 0 0

1 1 0
0 0 0

 ,
0 0 0

1 0 0
1 0 0

 ,
0 0 0

1 1 0
1 0 0

 ,
which are {(2, 1), (2, 2)}, {(2, 1), (3, 1)}, and {(2, 1), (2, 2), (3, 1)}. By Theorem 4.5,

Ĝy = (x2 ⊕ x1)x2 + (x2 ⊕ x1)(x3 ⊕ x1) + β(x2 ⊕ x1)x2(x3 ⊕ x1).
If z = s3 · s2 · 1FPF · s2 · s3 ∈ IFPF

n as in Example 4.1, then InvDreams(z) contains just
one element {(2, 1), (3, 1)}, and Theorem 4.5 asserts Ĝz = (x2 ⊕ x1)(x3 ⊕ x1).

Acknowledgements. We thank Sergey Fomin for suggesting the problem of finding
analogues of Macdonald’s formulas for Schubert polynomials outside type A.
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