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Counting Coxeter’s friezes over a finite field
via moduli spaces

Sophie Morier-Genoud

Abstract We count the number of Coxeter’s friezes over a finite field. Our method uses geo-
metric realizations of the spaces of friezes in a certain completion of the classical moduli space
M0,n allowing repeated points in the configurations. Counting points in the completed moduli
space over a finite field is related to the enumeration problem of counting partitions of cyclically
ordered set of points into subsets containing no consecutive points. In the appendix we provide
an elementary solution for this enumeration problem.

Introduction
The notion of friezes goes back to Coxeter in the early 70’s [8]. They are arrays of
numbers in which every four adjacent values forming a square are related by the same
arithmetic condition ad − bc = 1. The classification of friezes over positive integers
is given by a beautiful result of Conway and Coxeter [7] establishing an unexpected
bijection between friezes and triangulations of polygons. As a consequence the number
of friezes over positive integers with a fixed number of rows is given by a Catalan
number.

Friezes became popular in the last decade due to connections with the theory of
cluster algebras of Fomin and Zelevinsky. Many variants of friezes have been recently
introduced and studied. In particular Coxeter’s friezes over other sets of numbers, or
other types of friezes over positive integers, were investigated in various cases leading
to new interesting combinatorics, e.g. [1, 2, 10, 12, 13, 14, 17, 24].

In the present paper we determine the number of Coxeter’s friezes over an ar-
bitrary finite field. Our main result gives explicit polynomial formulas according to
the “width” of the friezes, i.e. the number of rows in the friezes. We express the for-
mulas with the help of the q-integer [m]q2 = q2m−1

q2−1 and the q-binomial coefficient(
m
2
)
q

= (qm−1)(qm−1−1)
(q−1)(q2−1) .

Theorem 1.

(i) The number of tame friezes of width 2m− 2 over Fq is given by
(1) f2m−2 = [m]q2 ,

for all m > 2;
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(ii) The total number of tame friezes of width 2m− 3 over Fq is given by

(2) f2m−3 =
{

(q − 1)
(
m
2
)
q
, if char(Fq) 6= 2, and m even

(q − 1)
(
m
2
)
q

+ qm−1, otherwise

for all m > 2.
We solve this problem by using geometric realizations of the spaces of friezes in

moduli spaces of configurations of points in the projective line. The realizations are
different according to the parity of the number of rows in the friezes leading to different
formulas according to this parity.

Friezes over complex numbers with an even number of rows containing no zero
entries, form an algebraic variety isomorphic to the classical moduli space M0,n,
where n equals width plus three [8, 22]. Tame friezes are more general friezes allowing
zero entries. When the number of rows is even, tame friezes form a bigger variety
denoted M̂0,n which is some completion ofM0,n [21, 20]. This is no longer true when
the friezes have an odd number of rows, one has to consider a subvariety of M̂0,n

that we denote M̂+
0,n.

Considering the variety of friezes as a cluster variety of type A the result of Theo-
rem 1 agrees with the result of [5].

The paper is organized as follows.
Section 1 is a brief introduction to Coxeter’s friezes. In particular we recall the

definition of tame friezes and their main properties.
In Section 2 we explain the geometric realizations of the spaces of friezes. Cases of

friezes with odd or even number of rows need to be distinguished. As a new result we
get the geometric realization of the space of tame friezes with odd number of rows as
M̂+

0,n, see Theorem 2.3.
In Section 3 we determine the number of points in the spaces M̂0,n and M̂+

0,n
when considered over Fq in Theorem 3.1 and Theorem 3.3 respectively, and we prove
Theorem 1. We end the section with examples of friezes over Fq and open problems.

Appendix A can be read independently of the rest of the paper. It deals with an
enumeration problem of restricted set partitions for which we provide an elementary
solution. More precisely we establish an explicit formula for the number of partitions of
n points on the circle into k subsets avoiding consecutive points, see Proposition A.4.
Our method is related to the counting of points in M̂0,n over Fq and requires only
the formula of Lemma 3.2 established for the proof of Theorem 3.1. These numbers
of restricted partitions are known and more information can be found about them on
A261139 of OEIS.

1. Coxeter’s friezes
1.1. Definition. Coxeter’s friezes [8] are arrays of numbers that can be described
as follows:

(i) The array has finitely many rows, all of them being infinite on the right and
left;

(ii) The first and last rows are rows of 1’s;
(iii) Consecutive rows are displayed with a shift, and every four adjacent entries

a, b, c, d forming a diamond
b

a d
c

satisfy the unimodular rule: ad− bc = 1.
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The number of rows strictly between the border rows of 1’s is called the width of
the frieze. The following array (3) is an example of a frieze pattern of width w = 4.

(3)

row 0 1 1 1 1 1 1 1 · · ·
row 1 · · · 4 2 1 3 2 2 1
row 2 3 7 1 2 5 3 1 · · ·
· · · · · · 5 3 1 3 7 1 2
row w 3 2 2 1 4 2 1 · · ·
row w + 1 · · · 1 1 1 1 1 1 1

One can observe that the above example of frieze contains only positive integers.
However, the definition allows the frieze to take its values in any subset of a unital ring.
Conway and Coxeter [7] established a surprising one-to-one correspondence between
the friezes over positive integers and the triangulations of polygons. As a consequence
of this correspondence one gets the following.
Theorem 1.1 ([7]). The number of friezes of width w over positive integers is given
by the Catalan number Cw+1 = 1

w+2
(2w+2
w+1

)
.

Several enumerative interpretations for the entries appearing in the friezes are
known, see [20] for an overview.

1.2. Tame friezes. By convention one extends the friezes top and bottom by rows
of 0’s and −1’s so that the unimodular rule still holds. Following [2] a frieze is said to
be tame if it satisfies the following extra condition: every 3× 3-entries in diamond in
the extended array

(4)

c
b f

a e i
d h
g

form a matrix of rank 2.
Friezes with no zero entries between the bordering rows of 1’s are all tame, but tame

friezes may contain zeroes. Generically when e 6= 0 the determinant of the matrix (4)
formed by the adjacent entries in a frieze vanishes by Desnanot–Jacobi identity. Hence
the tameness condition has to be checked only for entries centered at the zeroes of
the frieze.

Many properties established by Coxeter in the case of friezes over positive real num-
bers can be directly generalized to tame friezes with entries in any unital ring. Non-
tame friezes are called “wild” and may have completely different behavior, see [10].
In this paper we always assume that the friezes are tame.

Let us recollect some of the main properties of tame friezes.
Theorem 1.2 ([8]). Tame friezes of width w are (w + 3)-periodic. Moreover they are
invariant under a glide reflection.

The above property can be observed in the frieze (3). This array consists in the
fundamental domain

1 1 1 1 1 1
4 2 1 3 2

7 1 2 5
3 1 3

2 1
1
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repeated horizontally under glide reflections. We will sometimes represent a funda-
mental domain instead of the whole frieze.

The entries in the first row of a tame frieze of width w will be denoted a1, . . . , an,
with n = w + 3.

Theorem 1.3 ([8]). The South-East diagonal (∆i)06i6w+1 in a tame friezes of width
w, starting at ∆0 = 1,∆1 = a1, satisfies the recursion
(5) ∆i+1 = ai+1∆i −∆i−1, 1 6 i 6 w,
and similarly for the other diagonals up to shifts in the indices.

The above recursion gives an alternative way to compute the entries in the frieze
from the first row without using the relation ad − bc = 1. This relation may cause
trouble in the case where one of the entries is zero. A tame frieze starts as follows.

1 1 1 1 1
a1 a2 · · · an a1

· · · a1a2 − 1 a2a3 − 1 · · · ana1 − 1
ana1a2 − a2 a1a2a3 − a3 · · · ana1a2 − a2 · · ·
−an −a1 −an

. . . . . . . . . . . . . . .

1 1 1 1 1
The recursion (5) remains valid in the frieze extended top and bottom with rows
of 0’s and −1’s. This allows to immediately deduce the glide reflection property of
Theorem 1.2. Furthermore, the recursion (5) in the extended frieze can be encoded
by 2× 2 matrices and lead to the following criterion.

Theorem 1.4 ([8]). The n-tuple (a1, . . . , an) ∈ Kn determines the first row of a tame
frieze if and only if

(6)
(
an −1
1 0

)
· · ·
(
a2 −1
1 0

)(
a1 −1
1 0

)
= − Id .

The condition (6) is established in [8] in an equivalent form, using continuants, in
the case of friezes over positive real numbers. It was also recovered in this case in [2].
The arguments can be extended straightforward in the case of tame friezes over any
unital ring. The condition (6) is also established in [12] for tame friezes over subsets
of C and again the arguments can be extended straightforward in the case of tame
friezes over an arbitrary unital ring.

2. Friezes and the moduli space M̂0,n

2.1. Definition of M̂0,n. We fix a ground field K. The field will be later specified to
the field of complex numbers C or to the finite field Fq with q elements. A variety V (K)
defined over K will be denoted simply V when no confusion occurs, e.g. P1 = P1(K),
GL2 = GL2(K). The classical moduli space of genus 0 curves with n distinct marked
points is

M0,n ' {(v1, v2, . . . , vn) ∈ (P1)n, vi 6= vj , ∀i 6= j}/PGL2 .

We consider a completion of this space by allowing repetitions of points as long as
they are not cyclically next to each other

M̂0,n = {(v1, v2, . . . , vn) ∈ (P1)n, vi 6= vi+1, ∀i}/PGL2 .

The indices are considered modulo n, i.e. v1 = vn+1 6= vn.
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Counting Coxeter’s friezes over a finite field...

We often consider the configuration space used in the definition of M̂0,n; we define

Cn = {(v1, v2, . . . , vn) ∈ (P1)n, vi 6= vi+1, ∀i}

where again the indices are considered modulo n.

2.2. The subvariety of M̂+
0,2m. The varieties M̂0,n have different properties ac-

cording to the parity of n. In the case n = 2m we will need to consider the algebraic
subvariety of M̂+

0,2m that we define below. We first introduce two subspaces of C2m

C±2m :=
{

(v1, . . . , v2m) ∈ C2m

∣∣∣ (v1 − v2)(v3 − v4) · · · (v2m−1 − v2m)
(v2 − v3)(v4 − v5) · · · (v2m − v1) = −(±1)

}
and then define

M̂±0,2m := C±2m/PGL2 .

These are algebraic subvarieties of M̂0,2m of codimension 1.

Remark 2.1. These subvarieties are studied in [3] asMSibuya
2m (±1), see also [25].

2.3. Geometric realizations of tame friezes. Coxeter’s friezes have deep con-
nections with geometry [8, 9]. The link with the moduli space M0,n was explained
in [22] and then further generalized in higher dimension in [21].

The realization of friezes as geometric objects is the key ingredient in order to
achieve the goal of counting friezes over a finite field.

In the case of odd n one has the following known result.

Theorem 2.2 ([21]). When n > 3 is odd, tame friezes of width n− 3 over K form an
algebraic subvariety of Kn isomorphic to M̂0,n(K).

The above theorem is the particular case (k = 1) of [21, Thm 3.4.1]. The set of
tame friezes of width n−3 is viewed as the subvariety of Kn of dimension n−3 defined
by the polynomial equations of (6) (note that the matrices involved in (6) belong to
SL2 so that one gets three independent equations). The space M̂0,n(K) is identified
with a quotient of a Grassmannian by a torus action using Gel′fand–MacPherson’s
correspondence [16].

For our purpose, we only need a one-to-one correspondence between the set of tame
friezes and the moduli space (we do not need the isomorphism of algebraic varieties).
For completeness we explain the one-to-one correspondence in Section 2.4.

In the case of even n the situation is different. We need to consider friezes up to
rescaling of the first row. More precisely K∗ acts on the space of tame friezes with odd
width by sending the frieze defined by the cycle of the first row (a1, . . . , an) to the
frieze defined by (λa1,

1
λa2, . . . , λan−1,

1
λan) for λ ∈ K∗. Also, some elements in M̂0,n

do not correspond to friezes. We need to restrict to M̂+
0,n. One gets the following.

Theorem 2.3. When n > 3 is even, the set of tame friezes of width n − 3 over K,
modulo the action of K∗, is in one-to-one correspondence with M̂+

0,n(K).

We prove the above theorem in Section 2.5.

2.4. A one-to-one correspondence between tame friezes and M̂0,n(K),
case of odd n. We explain the bijection of Theorem 2.2 between the tame friezes
of width w = n− 3 with odd n over K and the set M̂0,n(K) = Cn(K)/PGL2(K). The
construction was given for K = R in [21] and K = C in [20]. Here the construction is
slightly modified in order to work over an arbitrary field K.

Choose v = (v1, . . . , vn) an element of Cn.
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Lemma 2.4. There exists (V1, . . . , Vn) a lift of v with Vi ∈ K2 such that
det(V1, V2) = det(V2, V3) = · · · = det(Vn−1, Vn) = det(Vn,−V1).

Proof. Consider first an arbitrary lift (V ′1 , . . . , V ′n) of v in K2. We want to extend
the sequence by antiperiodicity, V ′i+n = −V ′i , and rescale the points in order to have
constant consecutive determinants. Introducing the scalar parameter c and the un-
known scalars λi, 1 6 i 6 n, we consider the system given by the n conditions
det(λiV ′i , λi+1V

′
i+1) = c, 1 6 i 6 n.

This leads to the following

(7)



λ1λ2 = d1c

λ2λ3 = d2c

...
...

λn−1λn = dn−1c

λnλ1 = dnc

where di = 1/det(V ′i , V ′i+1) are well defined non zero scalars since vi 6= vi+1 in the
initial configuration.

Using λ1 as a parameter to solve the system one gets the expressions

(8) λ2i = d1d3 · · · d2i−1

d2d4 · · · d2i−2

c

λ1
, λ2i+1 = d2d4 · · · d2i

d1d3 · · · d2i−1
λ1

for all 1 6 i 6 (n− 1)/2, using all but the last equation of (7).
The fact that n is odd is now crucial to solve the above system. In order to have

the full system satisfied one needs to add the last equation and gets the final relation

λ2
1 = d1d3 . . . dn

d2d4 . . . dn−1
c.

It is clear that there is a choice of c ∈ K∗ leading to a solution (λ1, . . . , λn) for the
system. The sequence defined by Vi = λiV

′
i has the desired property. �

From a lift (Vi) of v given by Lemma 2.4, by expanding Vi in the basis (Vi−1, Vi−2),
one gets n coefficients (a1, . . . , an) defined by
(9) Vi = aiVi−1 − Vi−2, 1 6 i 6 n
where we set V0 = −Vn and V−1 = −Vn−1. The coefficients in front of Vi−2 are all
equal to −1 since consecutive determinants are constant.

Lemma 2.5. The coefficients (a1, . . . , an) defined by (9) only depend on the class of v
modulo PGL2(K) and characterize the class.

Proof. We need to check that the coefficients do not depend on the choice of the lift
in Lemma 2.4 and that they are invariant under the action of PGL2(K). Let w be a
configuration of Cn equivalent to v modulo PGL2(K) (this of course includes the case
w = v). Consider lifts (W1, . . . ,Wn) and (V1, . . . , Vn) for w and v as in Lemma 2.4.
There exist a matrixM ∈ GL2(K) and scalars µ1, . . . , µn in K∗ such thatWi = µiMVi
for all 1 6 i 6 n. Since the consecutive determinants are constant in both sequences
one immediately gets that µiµi+1 = µi−1µi for all 1 6 i 6 n, and hence µi = µ1 for
all 1 6 i 6 n (here again we use the fact that n is odd). Thus Wi = µ1MVi for all
1 6 i 6 n and this leads to the same coefficients in the expansions (9).

Now, if two lifts (W1, . . . ,Wn) and (V1, . . . , Vn) for two configurations w and v lead
to the same coefficients (9) then the matrix M defined by MV1 = W1 and MV2 = W2
will satisfy MVi = Wi for all 1 6 i 6 n. Thus w and v are equivalent modulo
PGL2(K). �
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Lemma 2.6. The coefficients (a1, . . . , an) satisfy (6).

Proof. By writing the coordinates of the vectors Vi and Vi−1 in the rows of a 2 × 2
matrix one obtains from (9)(

−V0
−V−1

)
=
(
Vn
Vn−1

)
=
(
an −1
1 0

)
· · ·
(
a2 −1
1 0

)(
a1 −1
1 0

)(
V0
V−1

)
.

Hence (6) holds. �

The above lemma and Theorem 1.4 imply that the coefficients (a1, . . . , an) defined
by (9) determine a unique tame frieze of width n− 3. Hence we have constructed an
injective map from M̂0,n(K) to the set of tame friezes of width n− 3.

Conversely, starting form a tame frieze of width n− 3, the corresponding point in
M̂0,n(K) is obtained from the sequence of n vectors

(10) (V1, . . . , Vn) =
(

1
a1

)
,

(
a2

a1a2 − 1

)
,

(
a2a3 − 1
∗

)
, · · · ,

(
∗
1

)
,

(
1
0

)
,

(
0
−1

)
whose components are given by the first and second diagonal of the frieze.

2.5. Correspondence between tame friezes and M̂+
0,n(K), case of even n.

In this section we prove Theorem 2.3. When n is even there is no bijection between
the tame friezes of width w = n − 3 and the set M̂0,n(K). We need to adapt the
strategy used in the case of odd n and use the subspace M̂+

0,n(K).

Lemma 2.7. When n is even Lemma 2.4 holds if and only if v ∈ C+
n .

Proof. We fix v ∈ C+
n and proceed as in the proof of Lemma 2.4. We are led to the

system (7). In general, for even n the system has no solution. But with the choice of
v ∈ C+

n , by definition, every arbitrary lift of v to (V ′i )16i6n will satisfy the relation

d1d3 · · · dn−1 = d2d4 · · · dn

where di = 1/det(V ′i , V ′i+1) (with V ′n+1 = −V ′1). This makes the system (7) consistent
and solutions for (λ1, . . . , λn) are given by (8) where λ1 is any non-zero parameter.
Hence the rescaling Vi = λiV

′
i provides us with an antiperiodic lift with constant

consecutive determinants.
Conversely, if such a lift exists the element v does belong to C+

n . (Note that the
choice of Vn+1 = −V1 makes a difference of sign in the equation defining C+

n .) �

For v ∈ C+
n and a lift (Vi) given by Lemma 2.4 one gets n coefficients (a1, . . . , an)

defined by the recursion (9). Now these coefficients depend on the choice of the lift, but
another choice of lift will lead to the coefficients (λa1,

1
λa2, . . . , λan−1,

1
λan) for some

λ 6= 0. We immediately obtain the following analogs of Lemma 2.5 and Lemma 2.6.

Lemma 2.8. The family of coefficients (λa1,
1
λa2, . . . , λan−1,

1
λan), λ 6= 0, defined

by (9), only depends on the class of v modulo the action of PGL2(K) and charac-
terizes the class.

Lemma 2.9. The coefficients (λa1,
1
λa2, . . . , λan−1,

1
λan) satisfy (6).

We conclude that an element of M̂+
0,n = C+

n /PGL2 defines a unique tame frieze
up to the rescaling (λa1,

1
λa2, . . . , λan−1,

1
λan), λ 6= 0, in the first row, and vice versa

by (10).
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3. Counting points over Fq

3.1. Counting points in M̂0,n(Fq). Let us recall some useful notation and basic
facts. One has [n]q := |Pn−1(Fq)| = 1 + q+ q2 + · · ·+ qn−1 = qn−1

q−1 and |PGL2(Fq)| =
q(q2 − 1).

Theorem 3.1. Let n > 2. The number of points in M̂0,n(Fq) is

|M̂0,n(Fq)| =
{

[m]q2 , if n = 2m+ 1,
1 + q[m− 1]q2 , if n = 2m.

Proof. We first count points in the space Cn.
Lemma 3.2. Denote by cn = |Cn(Fq)|. One has
(11) cn = qn + (−1)nq, n > 2.
Proof. One easily computes the first values c2 = (q + 1)q, c3 = (q + 1)q(q − 1),
which are obtained as the choice of two, resp. three, distinct points among the q + 1
points of P1(Fq). Consider a configuration (v1, . . . , vn+1, vn+2) in Cn+2. If v1 = vn+1
then the configuration can be viewed as a configuration (v1, . . . , vn) ∈ Cn with an
extra point vn+2 6= v1. There are qcn configurations of this type. If v1 6= vn+1 then
the configuration can be viewed as a configuration (v1, . . . , vn+1) ∈ Cn+1 with an
extra point vn+2 6∈ {v1, vn+1}. There are (q− 1)cn+1 configurations of this type. This
establishes the recurrence relation

cn+2 = (q − 1)cn+1 + qcn, n > 2.
This linear recurrence of order 2 can be easily solved and leads to the formula (11). �

When a configuration contains three distinct points it will lead to q(q2 − 1) other
configurations modulo the action of PGL2(Fq). When n = 2m+ 1 the configurations
in Cn always contain three distinct points, therefore

|M̂0,2m+1(Fq)| = c2m+1/(q(q2 − 1)) = (q2m − 1)/(q2 − 1) = [m]q2 .

When n = 2m, the (q+1)q configurations of the form (v1, v2, v1, v2, . . . , v1, v2), v1 6= v2
are all the same modulo PGL2(Fq). All other configurations contain three distinct
points. Therefore

|M̂0,2m(Fq)| = (c2m − q(q + 1))/(q(q2 − 1)) + 1 = 1 + q[m− 1]q2 .

�

Lemma 3.2 is the only result needed in Appendix A.

3.2. Counting points in M̂+
0,2m(Fq). We consider K = Fq and want to count the

points in the variety M̂+
0,2m defined in the previous section. Different cases appear

according to the characteristic of the field is 2 or not and according to m is even or
odd. Recall the definition of the q-binomial coefficient

(
m
2
)
q

= (qm−1)(qm−1−1)
(q−1)(q2−1) , which

simplifies to a polynomial in q.
Theorem 3.3. For all m > 1

|M̂+
0,2m(Fq)| =

{(
m
2
)
q
, if char(Fq) 6= 2 and m even,(

m
2
)
q

+ [m− 1]q + 1, otherwise.

Proof. We introduce the cardinals
c±n = |C±n (Fq)|.

Recall that cn = |Cn(Fq)| is given by Equation (11).
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Lemma 3.4. For all n > 4, even, one has c±n = cn−1 + qc∓n−2.

Proof. Let us choose v = (v1, . . . , vn) ∈ C+
n . Assume first that v1 6= vn−1. This means

that v′ = (v1, . . . , vn−1) defines an element of Cn−1. For such an element v′ there
is a unique choice of vn that makes (v′, vn) belong to C+

n . Indeed, choose any lift
of v′ to a tuple (V1, V2, . . . , Vn−1) of points in K2 and denote di = det(Vi, Vi+1) for
i = 1 . . . n− 2. We want to add Vn such that the following condition

d1d3 · · · dn−3 det(Vn−1, Vn) = −d2d4 · · · dn−2 det(Vn, V1)

holds. Since v1 6= vn−1, this leads to a unique choice of Vn, up to scalar multiple. We
conclude that there exist cn−1 elements v in C+

n such that v1 6= vn−1.
Assume now v1 = vn−1. The sequence v′′ = (v1, . . . , vn−2) is an element in Cn−2.

Choose any lift of v′′ to (V1, V2, . . . , Vn−2) and denote di = det(Vi, Vi+1) for i =
1 . . . n− 3 and dn−2 = det(Vn−2, V1). We want to add Vn−1 = λV1 and Vn in order to
have

d1d3 · · · dn−3 det(Vn−1, Vn) = −d2d4 · · · dn−3 det(Vn−2, Vn−1) det(Vn, V1).

Substituting Vn−1 = λV1 and cancelling λ’s we obtain the simplified condition

d1d3 · · · dn−3 det(V1, Vn) = −d2d4 · · · dn−2 det(Vn, V1),

which can hold if and only if d1d3 · · · dn−3 = d2d4 · · · dn−2, i.e. if and only if v′′ ∈ C−n−2.
And from this condition we see that if v′′ ∈ C−n−2 any choice of vn in P1(Fq) r {v1}
will make (v′′, v1, vn) belong to C+

n . We conclude that there exist qc−n−2 elements v in
C+
n such that v1 = vn−1.
We have established the recursion c+

n = cn−1 + qc−n−2. Same arguments hold when
taking opposite signs so we also have c−n = cn−1 + qc+

n−2. �

From the above lemma one obtains

c+
2m = c2m−1 + qc2m−3 + q2c2m−5 + · · ·+ qm−2c3 + qm−1c

(−)m−1

2

where (−)m−1 = + or − if m is odd or even respectively. So we will need to separate
the cases m odd or even. Also if char(Fq) = 2 one has c+

n = c−n since C+
n = C−n . So we

will need to separate the cases char(Fq) = 2 and char(Fq) > 2.

Lemma 3.5. For all m > 1

|M̂+
0,2m(Fq)| =

{∑m−1
k=1 qk−1[m− k]q2 , if char(Fq) 6= 2 and m even,∑m−1
k=1 qk−1[m− k]q2 + [m− 1]q + 1, otherwise.

Proof. Assume char(Fq) > 2 and n = 2m with even m. We have C−2 = ∅ so that
c−2 = 0 and we obtain from the recursion

c+
2m = c2m−1 + qc2m−3 + q2c2m−5 + · · ·+ qm−2c3.

The space C+
2m does not contain the elements of the form (v1, v2, v1, v2, . . . , v1, v2).

Thus elements of C+
2m always contain three distinct points and the orbits under PGL2

will have same cardinality |PGL2 | . One obtains

|C+
n /PGL2 | = c+

2m/(q3 − q) =
m−1∑
k=1

qk−1|M̂2m−2k+1| =
m−1∑
k=1

qk−1[m− k]q2 .

Assume char(Fq) > 2 and n = 2m with odd m. We have C+
2 = C2 so that c+

2 = c2 =
q(q + 1) and we obtain from the recursion

c+
2m = c2m−1 + qc2m−3 + q2c2m−5 + · · ·+ qm−2c3 + qm−1c2.
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The space C+
2m does contain the elements of the form (v1, v2, v1, v2, . . . , v1, v2). These

elements are all the same under the action of PGL2. The other elements of C+
2m always

contain three distinct points and their orbits under PGL2 have same cardinality q3−q.
One obtains

|C+
n /PGL2 | = (c+

2m − q(q + 1))/(q3 − q) + 1

=
m−1∑
k=1

qk−1|M̂2m−2k+1|+ (qm−1 − 1)q(q + 1)/(q3 − q) + 1

=
m−1∑
k=1

qk−1[m− k]q2 + [m− 1]q + 1.

Assume char(Fq) = 2. In that case c+
2 = c−2 = c2 = q(q + 1). The computations are

the same as in the previous case, independently of m is odd or even. �

Finally one gives alternative expressions in the formula of Lemma 3.5. One first
notices that

qk−1[m− k]q2 + qk[m− k − 1]q2 = qk−1 q
2(m−k) − 1 + q(2(m−k)−1) − q

q2 − 1

= q2m−k−2 − qk−1

q − 1 .

In the sums one can group the terms for k = 2` − 1 and k = 2`. If m = 2m′ one
obtains

m−1∑
k=1

qk−1[m− k]q2 = 1
q − 1

m′−1∑
`=1

(q2m−2`−1 − q2`−2) + qm−2

= 1
q − 1(qm−1[m′]q2 − [m′]q2)

= [m− 1]q[m′]q2

and if m = 2m′ + 1 one obtains
m−1∑
k=1

qk−1[m− k]q2 = 1
q − 1

m′∑
`=1

(q2m−2`−1 − q2`−2)

= 1
q − 1(qm[m′]q2 − [m′]q2)

= [m]q[m′]q2 .

One observes that in both cases
m−1∑
k=1

qk−1[m− k]q2 =
(
m

2

)
q

.

Theorem 3.3 is proved. �

3.3. Counting tame friezes over Fq. A tame frieze of width n− 3 is determined
by (a1, . . . , an) satisfying (6). It is clear that if (a1, . . . , an) satisfies (6) then so do
(a2, . . . , an, a1). The corresponding friezes look the same up to an horizontal shift.
We count friezes regardless of symmetries, i.e. we count all the solutions of (6) con-
sidering that (a1, a2, . . . , an) and (a2, . . . , an, a1) give two different friezes whenever
(a1, a2, . . . , an) 6= (a2, . . . , an, a1).

It is also clear that if (a1, . . . , an) satisfies (6) then so do (an, an−1, . . . , a1). The
corresponding friezes look the same up to vertical reflection. They count for two
different friezes whenever (a1, a2, . . . , an) 6= (an, an−1, . . . , a1).
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To count all the tame friezes, or equivalently the solutions of (6), over Fq, we use
the geometric realizations of the previous sections.

Proof of Theorem 1. (i) Let n = 2m + 3. The construction in Section 2.4 gives a
bijection between the set of tame friezes of width n − 3 with odd n and the set
M̂0,n(K). Theorem 3.1 gives the number of elements in the sets when K = Fq. Hence
we get (1).

(ii) Let n = 2m. By Theorem 2.3 every class in C+
n /PGL2 leads to a n-tuple

(a1, . . . , an) and a family of friezes defined by the first rows (λa1,
1
λa2, . . . , λan−1,

1
λan),

for all λ 6= 0.
Assume m even and char(Fq) 6= 2. In this case one has (a1, . . . , an) 6= (0, . . . , 0)

because the elements in C+
n are not of the form (v1, v2, v1, v2, . . . , v1, v2). Therefore

the corresponding family of friezes contains exactly (q − 1) distinct friezes. One thus
obtains

f2m−3 = (q − 1)|M̂+
0,2m| = (q − 1)

(
m

2

)
q

,

by Theorem 3.3.
Assume m odd and char(Fq) 6= 2, or assume char(Fq) = 2. In this case C+

n contains
the elements of the form (v1, v2, v1, v2, . . . , v1, v2). They are all in the same class
in M̂+

0,2m and this class gives the coefficients (a1, . . . , an) = (0, . . . , 0) and leads
to a unique frieze. The other classes in M̂+

0,2m lead to families of friezes defined
by (λa1,

1
λa2, . . . , λan−1,

1
λan), λ 6= 0 with (a1, . . . , an) 6= (0, . . . , 0). These families

contain (q − 1) distinct friezes. Using Theorem 3.3 one thus obtains

f2m−3 = (q − 1)
(
|M̂+

0,2m| − 1
)

+ 1 = (q − 1)
((

m

2

)
q

+ [m− 1]q

)
+ 1

= (q − 1)
(
m

2

)
q

+ qm−1.

Theorem 1 is proved. �

Remark 3.6. The polynomial (q − 1)
(
m
2
)
q
is a sum of odd powers of q minus a sum

of even powers of q. More precisely one has

(q − 1)
(
m

2

)
q

=
{
q2m−3 +q2m−5 + · · ·+qm+1 +qm−1−qm−2−qm−4−· · ·−q2−1, (m even),
q2m−3 +q2m−5 + · · ·+qm+2 +qm−qm−3−qm−5−· · ·−q2−1, (m odd).

Remark 3.7. It is known that friezes of width n− 3 are related to the cluster algebra
of type An−3 [4]. The results of Theorems 3.1 and 3.3 agree with the results of [5,
Prop 3.2] (see also [6, Prop 4.10]).

3.4. Friezes of width 1 over finite fields. Recall that the tameness condition
§ 1.2 is defined in the frieze extended top and bottom with rows of 0’s and −1’s. For
simplicity we omit these rows in the arrays.

Let K = Fq be a finite field of characteristic bigger than 2. Tame friezes of width
1 are exactly the following,

· · · 1 1 1 1 1 1 · · ·
· · · 2α−1 α 2α−1 α 2α−1 · · ·

· · · 1 1 1 1 1 1 · · ·
for all α 6= 0.
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Let K = Fq be a finite field of characteristic 2. Tame friezes of width 1 are exactly
the following

· · · 1 1 1 1 1 1 · · ·
· · · 0 α 0 α 0 · · ·

· · · 1 1 1 1 1 1 · · ·
with α ∈ K. If α 6= 0 the above array counts for two different friezes.

Hence we have just established that the number of tame friezes over Fq is 2q− 1 if
the characteristic is 2 and q− 1 otherwise, which agrees with the value of f1 given in
Theorem 1.

3.5. Examples of friezes of width 2 over finite fields. A frieze of width 2 is
determined by 5 consecutive coefficients (a1, a2, . . . , a5) on the first row. Under a dihe-
dral action, i.e. cyclic permutations (a2, a3, . . . , a1) and/or reversion (a5, a4, . . . , a1),
a frieze can produce up to 10 friezes.

By Theorem 1 there exist 1 + q2 tame friezes of width 2 over Fq.
For q = 2 the five friezes contain the following fundamental domain

1 1 1 1
1 1 1

0 0
1

and are defined by the coefficients (1, 1, 1, 0, 0) on the first row, up to cyclic permu-
tation.

For q = 4, let F4 = {0, 1, α, β} with β = 1 + α = α−1. The 17 friezes are the same
as the five listed above for F2 together with the friezes containing one of the following
three fundamental domains

1 1 1 1
α 0 β

1 1
1

1 1 1 1
α α α
α α

1

1 1 1 1
β β β
β β

1
Note that the domain on the left contributes to 10 friezes under dihedral action.

For q = 3 the 10 friezes are obtained by cyclic permutations of (2, 1, 0, 1, 2) and
(0, 2, 2, 2, 0). For q = 5 the 26 friezes are obtained by cyclic permutations and rever-
sions of (2,1,3,1,2), (4,4,4,0,0,) (4,2,0,2,4) (1,4,4,3,0), (3,3,3,3,3).

3.6. Friezes of width 3 over F2 and F3. A frieze of width 3 is determined by
6 consecutive coefficients (a1, a2, . . . , a6) in the first row. Under a dihedral action,
i.e. cyclic permutations (a2, a3, . . . , a1) and/or reversion (a6, a5, . . . , a1), a frieze can
produce up to 12 friezes.

By Theorem 1 there exist q3 + q2 − 1 tame friezes of width 3 over Fq.
For q = 2, there are 11 tame friezes of width 3 given by the cycles (1, 0, 1, 0, 0, 0),

(1, 1, 0, 1, 1, 0), (1, 1, 1, 1, 1, 1) and (0, 0, 0, 0, 0, 0). By dihedral action these cycles con-
tribute respectively to 6, 3, 1 and 1 friezes.

For q = 3, there are 35 tame friezes of width 3 given by the cycles (0, 0, 0, 2, 0, 1),
(1, 1, 0, 2, 2, 0), (1, 0, 2, 1, 0, 2), (1, 0, 1, 0, 1, 0), (2, 0, 2, 0, 2, 0) and (0, 0, 0, 0, 0, 0). By di-
hedral action these cycles contribute respectively to 12, 6, 6, 6, 2, 2 and 1 friezes.

3.7. Combinatorial models. Theorem 1 gives the number of friezes over an arbi-
trary finite field but how to produce all the friezes (or all solutions of (6)) remains a
natural open problem.

When working over Fp with p prime, the original construction of Conway–
Coxeter [7] for friezes over Z>0 by means of triangulations of polygons provides
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solutions to this problem by reducing modulo p. But not all the solutions. A
construction producing all the friezes over F2 and F3 has been given [19].

The construction of Conway–Coxeter [7] has been generalized to other cases [24,
11, 12, 17]. These generalized models could inspire a model for friezes over finite fields.

Open problem. Find a combinatorial model to construct all friezes over Fq.

3.8. Numerology. We compute the first terms of the sequence (fn) given by The-
orem 1:

char(Fq) > 2 char(Fq) = 2
f1 q − 1 2q − 1
f2 q2 + 1 idem
f3 q3 + q2 − 1 idem
f4 q4 + q2 + 1 idem
f5 q5 + q3 − q2 − 1 q5 + 2q3 − q2 − 1
f6 q6 + q4 + q2 + 1 idem
f7 q7 + q5 + q4 − q2 − 1 idem
f8 q8 + q6 + q4 + q2 + 1 idem
f9 q9 + q7 + q5 − q4 − q2 − 1 q9 + q7 + 2q5 − q4 − q2 − 1

The table below gives the numerical values for q = 2, 3 and 4.

q r fn f1 f2 f3 f4 f5 f6 f7

q = 2 3 5 11 21 43 85 171
q = 3 2 10 35 91 260 820 2501
q = 4 7 17 79 273 1135 4369 17696

The sequence for q = 2 is the Jacobsthal sequence, see A001045 in [23]. Indeed, from
the explicit formulas of Theorem 1, one can check that for q = 2 one has

fn = fn−1 + 2fn−2

for all n > 3.
The other sequences have no entry so far in OEIS.

Appendix A. Partitions of a circular set
As an application of the computation in Section 3 and independently of Section 2 and
Section 1 we solve an enumeration problem of restricted partitions of a circular set.

A.1. Definition. We consider the set {1, 2, . . . , n} as the labels of n cyclically or-
dered points on the circle, i.e. 1 and n are consecutive points. We denote by Ak,n the
number of partitions of the set into k parts such that no two consecutive points are
in the same part.

Example A.1. One always has A1,n = 0 and An,n = 1. For n = 3, one has A1,3 =
A2,3 = 0 and A3,3 = 1. For n = 4 one has A1,4 = 0, A2,4 = 1, since the only
allowed partition into two parts is exactly {1, 3} t {2, 4} and A3,4 = 2 since the
allowed partitions into three parts are exactly {1, 3}t{2}t{4} and {2, 4}t{1}t{3}.
For n = 5, one has A3,5 = 5, since the partitions of {1, . . . , 5} into 3 parts are
{1, 3} t {2, 4} t {5} together with the 5 cyclic permutations of the indices.
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Our next goal is to deduce the exact value of Ak,n from § 3.1. These values are
known, see A261139 and A105794 of [23]. The corresponding generating function is
given in [18]. They are also a particular case of graphical Stirling numbers [15].

A.2. Recounting points of Cn(Fq). We consider the set of configurations
Cn(Fq) = {(v1, v2, . . . , vn) ∈ (P1(Fq))n, v1 6= vn, vi 6= vi+1, ∀i}

introduced in § 2.1. The cardinal cn = |Cn(Fq)| has been computed in Lemma 3.2. It
can be related to the numbers Ak,n.
Proposition A.2. For n > 2, one has

cn = q(q + 1)
n∑
k=2

Ak,n

k−2∏
j=1

(q − j).

Proof. Let us choose a partition S1 t . . . t Sk of cyclic {1, 2, . . . , n} such that no
two consecutive integers are in the same subset S`. Consider a configuration in Cn
satisfying vi = vj if and only if i and j belong to the same part S`. There are exactly
(q + 1)q

∏k−2
j=1 (q − j) such configurations, corresponding to a choice of k points in

P1(Fq). Hence the result. �

In the next section we use the exact value of cn given by (11) to deduce the value
of Ak,n.

A.3. Determining Ak,n. The problem has now been translated into a simple prob-
lem of linear algebra consisting in expanding a given polynomial P (q) ∈ Q[q] into the
basis of the falling factorials

(q)k := q(q − 1) . . . (q − (k − 1)).
This exercise has been probably already solved in the literature. We write down a
brief solution.

Let P be a polynomial of degree n and denote by Bk its coefficients in the basis
{(q)k}k, i.e.

P (q) =
n∑
k=0

Bk (q)k.

Lemma A.3. For 0 6 k 6 n, one has

Bk = (−1)k
k∑
j=0

(−1)j

j!(k − j)!P (j).

Proof. By evaluating at q = j, and setting pj := P (j)/j!, one immediately obtains

pj =
j∑

k=0

1
(j − k)!Bk,

that can be written in a triangular linear system

p0

p1

p2

p3

...
pn


=



1
0!
1
1!

1
0!

1
2!

1
1!

1
0!

1
3!

1
2!

1
1!

1
0!

...
...

...
. . .

1
n!

1
(n−1)!

1
(n−2)! · · ·

1
1!

1
0!





B0

B1

B2

B3

...
Bn


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whose inverse system is

B0

B1

B2

B3

...
Bn


=



1
0!

− 1
1!

1
0!

1
2! − 1

1!
1
0!

− 1
3!

1
2! − 1

1!
1
0!

...
...

. . .
(−1)n

n!
(−1)n−1

(n−1)! · · · · · · −
1
1!

1
0!





p0

p1

p2

p3

...
pn


.

Hence, one obtains

Bk = (−1)k
k∑
j=0

(−1)j

(k − j)!pj .

�

Applying the above lemma for P = cn/q(q+1) with cn given by (11) (note that this
is indeed a polynomial in q since cn vanishes for q = 0 and q = −1), one immediately
deduces the following formula.

Proposition A.4. For n > 2 and 2 6 k 6 n, one has

Ak,n = (−1)k
k∑
j=2

(−1)j

j!(k − j)!
(

(j − 1)n + (−1)n(j − 1)
)
.
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