Motivated by connections to intersection homology of toric morphisms, the motivic monodromy conjecture, and a question of Stanley, we study the structure of geometric triangulations of simplices whose local -polynomial vanishes. As a first step, we identify a class of refinements that preserve the local -polynomial. In dimensions 2 and 3, we show that all geometric triangulations with vanishing local -polynomial are obtained from one or two simple examples by a sequence of such refinements. In higher dimensions, we prove some partial results and give further examples.
Révisé le :
Accepté le :
Publié le :
Mots-clés : local $h$-polynomials, triangulations of simplices, geometric triangulations
@article{ALCO_2020__3_6_1417_0, author = {de Moura, Andr\'e and Gunther, Elijah and Payne, Sam and Schuchardt, Jason and Stapledon, Alan}, title = {Triangulations of simplices with vanishing local $h$-polynomial}, journal = {Algebraic Combinatorics}, pages = {1417--1430}, publisher = {MathOA foundation}, volume = {3}, number = {6}, year = {2020}, doi = {10.5802/alco.146}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.146/} }
TY - JOUR AU - de Moura, André AU - Gunther, Elijah AU - Payne, Sam AU - Schuchardt, Jason AU - Stapledon, Alan TI - Triangulations of simplices with vanishing local $h$-polynomial JO - Algebraic Combinatorics PY - 2020 SP - 1417 EP - 1430 VL - 3 IS - 6 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.146/ DO - 10.5802/alco.146 LA - en ID - ALCO_2020__3_6_1417_0 ER -
%0 Journal Article %A de Moura, André %A Gunther, Elijah %A Payne, Sam %A Schuchardt, Jason %A Stapledon, Alan %T Triangulations of simplices with vanishing local $h$-polynomial %J Algebraic Combinatorics %D 2020 %P 1417-1430 %V 3 %N 6 %I MathOA foundation %U http://www.numdam.org/articles/10.5802/alco.146/ %R 10.5802/alco.146 %G en %F ALCO_2020__3_6_1417_0
de Moura, André; Gunther, Elijah; Payne, Sam; Schuchardt, Jason; Stapledon, Alan. Triangulations of simplices with vanishing local $h$-polynomial. Algebraic Combinatorics, Tome 3 (2020) no. 6, pp. 1417-1430. doi : 10.5802/alco.146. http://www.numdam.org/articles/10.5802/alco.146/
[1] A survey of subdivisions and local -vectors, The mathematical legacy of Richard P. Stanley, Amer. Math. Soc., Providence, RI, 2016, pp. 39-51 | DOI | Zbl
[2] The local -vector of the cluster subdivision of a simplex, Sém. Lothar. Combin., Volume 66 (2011/12), Art. B66c, 21 pages | MR | Zbl
[3] Combinatorics and topology of proper toric maps, J. Reine Angew. Math., Volume 744 (2018), pp. 133-163 | DOI | MR | Zbl
[4] Motivic Igusa zeta functions, J. Algebraic Geom., Volume 7 (1998) no. 3, pp. 505-537 | MR | Zbl
[5] Complex powers and asymptotic expansions. II. Asymptotic expansions, J. Reine Angew. Math., Volume 278/279 (1975), pp. 307-321 | DOI | MR | Zbl
[6] Local -polynomials, invariants of subdivisions, and mixed Ehrhart theory, Adv. Math., Volume 286 (2016), pp. 181-239 | DOI | MR | Zbl
[7] Subdivisions and local -vectors, J. Amer. Math. Soc., Volume 5 (1992) no. 4, pp. 805-851 | DOI | MR | Zbl
[8] Formulas for monodromy, Res. Math. Sci., Volume 4 (2017), 8, 42 pages | DOI | MR | Zbl
Cité par Sources :