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Newton polytopes of rank 3 cluster variables

Kyungyong Lee, Li Li & Ralf Schiffler

Abstract We characterize the cluster variables of skew-symmetrizable cluster algebras of
rank 3 by their Newton polytopes. The Newton polytope of the cluster variable z is the
convex hull of the set of all p ∈ Z3 such that the Laurent monomial xp appears with nonzero
coefficient in the Laurent expansion of z in the cluster x. We give an explicit construction
of the Newton polytope in terms of the exchange matrix and the denominator vector of the
cluster variable.

Along the way, we give a new proof of the fact that denominator vectors of non-initial cluster
variables are non-negative in a cluster algebra of arbitrary rank.

1. Introduction
Cluster algebras were discovered by Fomin and Zelevinsky in 2001. Since then, it
has been shown that they are related to diverse areas of mathematics such as al-
gebraic geometry, total positivity, quiver representations, string theory, statistical
physics models, non-commutative geometry, Teichmüller theory, tropical geometry,
KP solitons, discrete integrable systems, quantum mechanics, Lie theory, algebraic
combinatorics, WKB analysis, knot theory, number theory, symplectic geometry, and
Poisson geometry.

A cluster algebra is equipped with a set of distinguished generators called cluster
variables. These generators are very far from being fully understood. Explicit combi-
natorial formulas that are manifestly positive are known for cluster variables in cluster
algebras from surfaces [16] and for cluster algebras of rank 2 [14]. For skew-symmetric
cluster algebras, there is the cluster character formula for the cluster variables [18]
as well as the F -polynomial formula [6] and for skew-symmetrizable cluster algebras
there is the scattering diagram approach [10], but none of these provide computable
formulas.
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For a general cluster algebra, we do know that cluster variables satisfy the Laurent
phenomenon [8] and positivity [15, 10], namely, every cluster variable z can be writ-
ten as

z =
∑

p∈Zn

e(p)xp,

where e(p) > 0 for all p, and e(p) > 0 for finitely many p.
A natural questions is how to describe the set S(z) := {p : e(p) > 0}. However

this can be very hard in general (see Remark 5.3). More feasible questions would be
the following.

(a) Describe the Newton polytope of z (which is the convex hull of S(z) by defi-
nition).

(b) Find a subset U(z) ⊂ Rn such that the condition S(z) ⊂ U(z) uniquely
detects the cluster variable z (up to a scalar) among all elements in the cluster
algebra.

These problems have been solved in [13] for the rank 2 case. In fact, it turns
out that the Newton polytope is a solution to (b). The paper [13] also introduced
a so-called greedy basis, which includes all cluster variables, and found a certain
support condition that uniquely detects each greedy basis element (up to a scalar)
among all elements in the cluster algebra. An alternative characterization of greedy
elements using a support condition (SC) plays an essential role in the construction of
quantum greedy bases of rank 2 cluster algebras [12]. This support condition was a
key ingredient in [5], where it was shown that, in rank 2, the greedy basis coincides
with the theta basis defined in [10].

In this paper, we consider the rank 3 case. We solve problems (a) and (b), and
prove that the Newton polytope of z is a solution to (b). We also generalize the result
to quantum cluster variables. The step from rank 2 to rank 3 is known to be difficult,
since one has to add the dynamics of the exchange matrix to the problem. In rank 2,
the mutation is trivial on the level of the exchange matrix. In rank 3 however, except
for a few small cases, the mutation class of the matrix is infinite and the representation
theory of the quiver is wild.

Along the way, we give a new elementary proof of the fact that denominator vectors
of non-initial cluster variables are non-negative in a cluster algebra of arbitrary rank.
This was conjectured by Fomin and Zelevinsky in [9] and recently proved by Cao and
Li in [3] using the positivity theorem.

Recently, Fei has studied combinatorics of F -polynomials using a representation-
theoretic approach [7]. In that paper it was shown that the F -polynomial of every
cluster variable of an acyclic skew-symmetric cluster algebra has saturated support,
which means that all lattice points in the Newton polytope of the F -polynomial are in
the support of the F -polynomial. Briefly speaking, in the case of skew-symmetric rank
3 cluster algebras, Fei’s result is related to our work in the following sense. The Newton
polytope of a cluster variable (which lies in a plane inside R3) is a projection of the
Newton polytope of the corresponding F -polynomial (which is usually 3-dimensional)
under a linear map. The supports of F -polynomials are expected to be saturated
but cluster variables are not saturated in general. On the other hand, the Newton
polytopes of the F -polynomials are difficult to determine but the Newton polytopes of
the cluster variables can be explicitly determined. Please see Corollary 5.2, Remark 5.3
and Remark 7.2 for more details.

The paper is organized as follows. In Section 2, we briefly review the solutions
for (a) and (a) for rank 2 cluster algebras and in Section 3, we explain our notation
and recall several basic facts about cluster algebras. We prove the non-negativity of
denominator vectors in Section 4. Our main theorem is presented in Section 5 and
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proved in Section 6. We then give an example in Section 7. Finally, in Section 8 we
prove a quantum analogue of the main theorem.

2. Rank 2
In this section, we let B be a 2× 2 skew-symmetrizable matrix and A(B) the corre-
sponding cluster algebra with principal coefficients.

2.1. Greedy basis. It is proved in [13] that for each rank 2 cluster algebra there
exists a so-called greedy basis defined as follows. Let B = [ 0 b

c 0 ] denote the exchange
matrix. Then for (a1, a2) ∈ Z2, define c(p, q) for (p, q) ∈ Z2

>0 recursively by c(0, 0) = 1,

c(p, q)=max

(
p∑

k=1

(−1)k−1c(p−k, q)
(

a2−cq+k−1
k

)
,

q∑
k=1

(−1)k−1c(p, q − k)
(

a1−bp+k−1
k

))
and define the greedy element at (a1, a2) as

x[a1, a2] =
∑
c(p, q)xbp1 x

cq
2

xa1
1 xa2

2
.

Recall that an element of A(B) is called positive if its Laurent expansion is positive
in every seed. A positive element is indecomposable if it cannot be written as a sum
of two positive elements. Finally, a basis B is called strongly positive if any product of
elements from B can be expanded as a positive linear combination of elements of B.

Theorem 2.1 ([13]). The set B = {x[a1, a2] | (a1, a2) ∈ Z2} is a strongly positive
basis for the cluster algebra A(B). Moreover B contains all cluster monomials and all
elements of B are indecomposable positive elements of A(B). B is called the greedy
basis.

Here the fact that B is strongly positive follows from [5], where it is shown that
the greedy basis coincides with the theta function basis defined in [10].

2.2. Characterization using support conditions. The following alternative
characterization of greedy elements using a support condition (SC) plays an essential
role in the construction of greedy bases of rank 2 quantum cluster algebras [12].

Theorem 2.2. The coefficients c(p, q) of x[a1, a2] are determined by:
(NC) (Normalization condition) c(0, 0) = 1.
(DC) (Divisibility condition)

if a2 > cq, then (1 + x)a2−cq|
∑
i c(i, q)xi.

if a1 > bp, then (1 + x)a1−bp|
∑
i c(p, i)xi.

(SC) (Support condition) c(p, q) = 0 outside the region given in [12, Figure 1].
Moreover, if x[a1, a2] is a cluster variable then condition (SC) becomes c(p, q) = 0

outside the closed triangle with vertices (0, 0), (a2, 0), (0, a1), as shown in Figure 1.

The main theorem of this paper, Theorem 5.1, gives a similar characterization for
cluster variables for every rank 3 cluster algebra.

3. Preparation
3.1. Definition, notations, and facts in cluster algebras. We recall the
definition of skew-symmetrizable cluster algebras with principal coefficients.

A square matrix B is called skew-symmetrizable if there exists a positive integer
diagonal matrix D such that DB is skew-symmetric.
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O a2

a1

p

q

Figure 1. Support of a cluster variable x[a1, a2] of a rank 2 cluster algebra

Let n be a positive integer. Let T denote the n-regular tree whose edges are labeled
by integers in {1, . . . , n} so that each vertex is incident on n edges with distinct labels.
The notation t k−−−t′ means that the edge joining t and t′ is labeled by k.

Denote by F the field of rational functions Q(x1, . . . , x2n). To distinguish between
mutable variables x1, . . . , xn and coefficient variables xn+1, . . . , x2n, we also use the
notation yi = xn+i, for i = 1, . . . , n. For p = (p1, . . . , pn) ∈ Zn, let xp = xp1

1 · · ·xpn
n ,

yp = yp1
1 · · · ypn

n . For p̃ = (p1, . . . , p2n) ∈ Z2n, let xp̃ = xp1
1 · · ·x

p2n

2n .
Each vertex t ∈ T is decorated with a seed Σt = (x(t), B̃(t)) where:
• B̃(t) = [b(t)ij ] is a 2n× n integer matrix such that the submatrix B(t) formed
by the top n rows of B̃(t) is skew-symmetrizable.

• x(t) = {x1(t), . . . , xn(t)} is an n-tuple of elements of F .
The seeds are defined recursively by mutation as follows. Fix an initial vertex

t0 ∈ T and define the initial seed as x(t0) = {x1, . . . , xn}, B̃ = [B
I ] where B is a n× n

skew-symmetrizable matrix and I is the n× n identify matrix.
For any real number a, let [a]+ := max(a, 0). Given a seed Σt = (x(t), B̃(t)) and an

edge t k−−−t′, we define the mutation of Σt to be µk(Σt) = Σt′ = (x(t′), B̃(t′)), where

b
(t′)
ij =

−b
(t)
ij if i = k or j = k,

b
(t)
ij + sgn(b(t)ik )[b(t)ik b

(t)
kj ]+ otherwise.

xi(t′) =


xk(t)−1

 2n∏
j=1

xj(t)[b(t)
jk

]+ +
2n∏
j=1

xj(t)[−b(t)
jk

]+

 if i = k ,

xi(t) otherwise.

Each xi(t) is called a cluster variable. The cluster algebra A is the Q[x±n+1, . . . , x
±
2n]-

subalgebra of F generated by all cluster variables.
For each seed Σt, let C(t) be the n×n submatrix of B̃(t) formed by the bottom n

rows of B̃(t). Its columns, c1(t), . . . , cn(t), are called c-vectors. We need the following
theorem proved by Gross–Hacking–Keel–Kontsevich in [10, Corollary 5.5].

Theorem 3.1 (Sign-coherence of c-vectors [10]). In a skew-symmetrizable cluster al-
gebra, every c-vector c(t)

k = [b(t)ik ]2ni=n+1 is in Zn>0 ∪ Zn60.

We will need the following lemma. (As suggested by the referee, it follows imme-
diately from a result of Nakanishi and Zelevinsky.)
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Lemma 3.2. The determinant of C(t) is 1 or −1. As a consequence, the c-vectors are
linearly independent, and all c-vectors are nonzero.

Proof. By [17, Theorem 1.2], the integer matrix C(t) is the inverse of another integer
matrix. So the determinant of C(t) is 1 or −1. �

We also need the following fact, which is shown for skew-symmetric cluster algebras
in [6], but we could not find a reference in the skew-symmetrizable setting. A close
reference is [11, Lemma 5.1] which describes a similar idea in the skew-symmetric
case.

Lemma 3.3. The F -polynomial of every cluster variable of a skew-symmetrizable clus-
ter algebra has constant term 1.

Proof. We prove that the conclusion holds for cluster variables in every seed, by
induction on the distance from the current seed to the initial seed in the n-regular
tree T.

The statement is true for the initial seed since the F -polynomials are 1.
Assume the conclusion is true for the seed t and unknown for t′ = µk(t). The rule

of change of F -polynomials under mutation is given in [8, Proposition 5.1], where the
only F -polynomial that changes under mutation µk is:

F
(t′)
k =

y[c(t)
k

]+ ∏n
i=1(F (t)

i )[b(t)
ik

]+ + y[−c(t)
k

]+ ∏n
i=1(F (t)

i )[−b(t)
ik

]+

F
(t)
k

.

By sign-coherence of c-vectors (Theorem 3.1), [c(t)
k ]+ ∈ Zn>0 ∪ Zn60. Assuming c(t)

k ∈
Z>0 (the other case can be proved similarly), we have an equality in Z[y1, . . . , yn]:

F
(t′)
k F

(t)
k = y[c(t)

k
]+

n∏
i=1

(F (t)
i )[b(t)

ik
]+ +

n∏
i=1

(F (t)
i )[−b(t)

ik
]+ .

Moreover y[c(t)
k

]+ 6= 1 since c(t)
k 6= 0. Letting y1 = · · · = yn = 0, we immediately

conclude that the constant term of F (t′)
k is 1. So the conclusion is true for t′. �

For convenience, we introduce simpler notations for rank 3 cluster algebras. Let

B = [bij ] =

 0 a −c′
−a′ 0 b
c −b′ 0

 , B̃ = [bij ] =


0 a −c′
−a′ 0 b
c −b′ 0
1 0 0
0 1 0
0 0 1

 .

The assumption that B̃ be skew-symmetrizable implies the existence of positive inte-
gers δ1, δ2, δ3 such that δibij = −δjbji for all i, j. So we can define

ā := δ1a = δ2a
′, b̄ := δ2b = δ3b

′, c̄ := δ3c = δ1c
′, thus DB =

 0 ā −c̄
−ā 0 b̄

c̄ −b̄ 0

 .
We say B is cyclic if a, b, c are either all strictly positive or all strictly negative,

otherwise B is acyclic.
Note that aa′, bb′, cc′ > 0. Denote the i-th column of B by Bi. Then

b̄B1 + c̄B2 + āB3 = 0.
In particular, the vectors B1, B2, B3 ∈ R3 are coplanar, which is a fact essential for
this paper.
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In this paper, we assume the non-degeneracy condition that at most one of a, b, c
is zero.

Remark 3.4. In the degenerate case when at least two of a, b, c are zero, some of the
proofs in this paper may not longer work. On the other hand, the degenerate case is
essentially a rank 2 cluster algebra and our main theorems follows directly from [12].
Note that if the initial B-matrix satisfies the non-degeneracy condition, then all the
B-matrices obtained by mutations satisfy the non-degeneracy condition.

3.2. Circular order.

Definition 3.5. We say a sequence of coplanar vectors v1, . . . , vn is in circular order
if there is an R-linear isomorphism φ from a plane containing these vectors to the
complex plane C such that

φ(vk) = rke
√
−1θk , rk > 0 (1 6 k 6 n), and θ1 6 θ2 6 · · · 6 θn 6 θ1 + 2π.

We introduce the following notation. Given (d1, d2, d3) ∈ Z3, define
(1) vi = diBi (for i = 1, 2, 3) and v4 = −v1 − v2 − v3.

The following easy observation is very useful for proving the circular order condition.

Lemma 3.6. Assume (d1, d2, d3) ∈ Z3
>0 r {(0, 0, 0)}. Then Bi, Bj , Bk,v4 is in circular

order if and only if the following conditions hold:
(1) If B1, B2, B3 are not in the same half plane, then v4 = λ1Bi+λ2Bk for some

λ1, λ2 > 0.
(2) If B1, B2, B3 are strictly in the same half plane (so no two are in opposite

directions), then Bj = η1Bi + η2Bk for some η1, η2 > 0. In particular, if two
of B1, B2, B3 are in the same direction, then one of them is Bj.

(3) If two of B1, B2, B3 are in opposite directions, then either
• Bi, Bk are in opposite directions, or
• Bi, Bj are in opposite directions, dk = 0, and v4, Bi are in the same
direction, or

• Bj , Bk are in opposite directions, di = 0, and v4, Bk are in the same
direction.

Proof. This is an easy observation using Figure 2 as reference. �

3.3. Weakly convex quadrilaterals.

Definition 3.7. Assume four points P1, P2, P3, P4 ∈ R3, not necessarily distinct, are
coplanar. We call the polygon P = P1P2P3P4 a weakly convex quadrilateral if the
four vectors −−−→P1P2,

−−−→
P2P3,

−−−→
P3P4,

−−−→
P4P1 are in circular order.

We use convention that Pi+4k = Pi for 1 6 i 6 4 and k ∈ Z.
If P = P1P2P3P4 is a weakly convex quadrilateral, we denote by |P| ⊂ R3 the

convex hull of {P1, P2, P3, P4}.

Remark 3.8. By definition, |P| is just a bounded convex subset of a real plane inside
R3, while P “remembers” four points in the polygon which are not necessarily distinct
and not necessarily the vertices of the polygon. Nevertheless, the set of vertices of |P|
is a subset of {P1, . . . , P4}. See Figure 3 for some examples of P. When we talk about
the physical features of a weakly convex quadrilateral P, where we do not have to pay
attention to the four special points P1, . . . , P4 of P, we would for simplicity identify P
with |P|, the underlying convex set. This applies to phrases like “a point is contained
in P”, “the Newton polytope of a cluster variable is P”, “P is a line segment”, “P
is a triangle”, or “dim P = 1”. If we need to use the actual coordinates of the points

Algebraic Combinatorics, Vol. 3 #6 (2020) 1298



Newton polytopes of rank 3 cluster variables

(1)

O

Bi

Bj

Bk

v4

(2)

O

Bi

Bj

Bk

v4

(3) Bi, Bk opposite

O

Bi

Bj

Bk v4

(3) Bi, Bj opposite, dk = 0

O

Bi

Bj Bk

v4

(3) Bj , Bk opposite, di = 0

O

Bj

Bk
Biv4

Figure 2. The three cases of Lemma 3.6

P1, . . . , P4, then we distinguish P from |P|. This includes Lemma 3.9, Lemma 3.11,
and Section 6.3.

In the following, we shall give a more explicit description of weakly convex quadri-
laterals. Recall that P is a (usual) convex quadrilateral if the four vectors −−−→P1P2,

−−−→
P2P3,−−−→

P3P4,
−−−→
P4P1 are in circular order, all nonzero, and that no two are in the same direc-

tion. In terms of complex numbers, that is to say: if there is an R-linear isomorphism
φ such that

φ(−−−−−→PkPk+1) = rke
√
−1θk , rk > 0 (1 6 k 6 4), and θ1 < θ2 < θ3 < θ4 < θ1 + 2π.

Lemma 3.9. Let P = P1P2P3P4. The following are equivalent:
(1) P is weakly convex.
(2) P is the limit of a sequence of convex quadrilaterals.
(3) P is one of the following:

• dim P = 0 (that is, P1 = P2 = P3 = P4, so P degenerates to a point);
• dim P = 1, P is a line segment PiPi+3 and Pi, Pi+1, Pi+2, Pi+3 are ar-
ranged in order, for some 1 6 i 6 4;
• dim P = 1, P is a line segment PiPi+2 which contains Pi+1 and Pi+3,
for some 1 6 i 6 4;
• dim P = 2, P is a triangle PiPi+1Pi+2 whose side Pi+2Pi contains the
point Pi+3, for some 1 6 i 6 4;

• dim P = 2, P1P2P3P4 is a (usual) convex quadrilateral.

Proof. (1)⇐ (2): Assume the sequence of P(j) = P
(j)
1 P

(j)
2 P

(j)
3 P

(j)
4 has limit P and

φ(P (j)
k P

(j)
k+1) = r

(j)
k e
√
−1θ(j)

k , r
(j)
k > 0 (1 6 k 6 4),

and
θ

(j)
1 < θ

(j)
2 < θ

(j)
3 < θ

(j)
4 < θ

(j)
1 + 2π.
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By choosing appropriate angles θ(j)
k and replace the sequence by a subsequence if

necessary, we can assume

lim
j→∞

r
(j)
k = rk, lim

j→∞
θ

(j)
k = θk.

Then by the property of limits we conclude that rk > 0 and θ1 6 θ2 6 θ3 6 θ4 6
θ1 + 2π. So −−−→P1P2, . . . ,

−−−→
P4P1 are in circular order.

(2)⇐ (3): Obvious from the Figure 3.

P1

P2

P3

P4

P1 = · · · = P4

Pi

Pi+1

Pi+2

Pi+3

Pi+3
Pi+2
Pi+1
Pi

Pi

Pi+1

Pi+3

Pi+2

Pi+2
Pi+3
Pi+1
Pi

Pi

Pi+1 Pi+2

Pi+3

Pi

Pi+1 Pi+2

Pi+3

P1

P2 P3

P4

P1

P2 P3

P4

Figure 3. Bottom figures are the limit of the corresponding top
convex quadrilaterals for the five cases in Lemma 3.9 (3)

(1)⇒ (3): we show the contrapositive. If P is not listed in (3), then it must be one
of those listed below, all of which are obviously not weakly convex (see Figure 4).

• dim P = 1, P is a line segment PiPi+3 and Pi, Pi+2, Pi+1, Pi+3 are arranged
in order, for some 1 6 i 6 4;

• dim P = 2, P is a triangle PiPi+1Pi+2 for some 1 6 i 6 4, and the line
segment Pi+2Pi does not contain the point Pi+3. �

Pi+3

Pi+1

Pi+2

Pi

Pi

Pi+1 Pi+2

Pi+3

Pi

Pi+1 Pi+2

Pi+3

Pi

Pi+1 Pi+2

Pi+3

Pi

Pi+1 = Pi+3 Pi+2

Figure 4. Quadrilaterals that are not weakly convex

Definition 3.10. Given r vectors P1, P2, . . . , Pr in R3 with coordinates Pi =
[ pi1
pi2
pi3

]
,

define their minimum vector by

−−→min(P1, . . . , Pr) =

m1
m2
m3

 , with mi = min(p1,i, p2,i, . . . , pr,i).

For example, if P1 =
[

1
2
3

]
and P2 =

[
3
4
0

]
, then −−→min(P1, P2) =

[
1
2
0

]
.
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3.4. Weakly convex quadrilaterals in rank 3 cluster algebras. We are
going to construct a weakly convex quadrilateral Pd for all positive integer vectors
d ∈ Z3. Later the vector d will be the denominator vector of a cluster variable. For the
initial denominator vectors d ∈

{[−1
0
0

]
,
[ 0
−1
0

]
,
[ 0

0
−1

]}
, we let Pd be the degenerate

quadrilateral consisting of the point d. For all other d we have the following lemma.
Recall that vi = diBi.

Lemma 3.11. For all d ∈ Z3
>0 r (0, 0, 0) there exists a weakly convex quadrilateral

Pd = PB
d = P1P2P3P4 (We use Pd when there is no risk of confusion of which

matrix B we refer to.)
such that
(1) There is a permutation (i, j, k) of (1, 2, 3) such that

(1a) bij > 0, bjk > 0.
(1b) −−−→P1P2 = vi,

−−−→
P2P3 = vj,

−−−→
P3P4 = vk.

(1c) the four vectors Bi, Bj , Bk,v4 = −vi − vj − vk are in circular order.
(2) −−→min(P1, P2, P3, P4) = −d.

Moreover, even though Pd may not be uniquely determined by the above condition
(because P1, . . . , P4 may vary), the convex hull |Pd| is unique.

Proof. We define Pd = P1P2P3P4 as follows. For an illustration see Example 7.1. First
define a quadrilateral P̃ by the vertices P̃1 = (0, 0, 0), P̃2 = P̃1 + vi, P̃3 = P̃2 + vj ,
and P̃4 = P̃3 + vk. Clearly this quadrilateral satisfies condition (1b), but it does
not necessarily satisfy condition (2). Let d̃′ = −−−→min(P̃1, P̃2, P̃3, P̃4). Then define the
quadrilateral Pd as the translation of the quadrilateral P̃ by d′−d. Then Pd satisfies
conditions (1b) and (2).

Also note that condition (1c) implies the weaker condition that the vectors −−−→P1P2 =
vi,
−−−→
P2P3 = vj ,

−−−→
P3P4 = vk,

−−−→
P4P1 = v4 are in circular order. Thus (1c) implies that

the quadrilateral is weakly convex.
Thus it remains to show conditions (1a) and (1c). We prove these in five separate

cases. See Figures 5–9.

Case 1. Suppose Q is acyclic and abc 6= 0. We may assume without loss of generality
that a, b > 0, and c < 0. Let (i, j, k) = (1, 2, 3). Thus condition (1a) holds. Fur-
thermore, in this case, B2 = (−b̄/c̄)B1 + (−ā/c̄)B3 is a positive linear combination
of B1 and B3. Hence all three vectors B1, B2, B3 lie in the same half plane. Thus
Lemma 3.6 (2) implies that B1, B2, B3,v4 are in circular order. This proves (1c).

O

B1

B2

B3v4 P1

P2 P3

P4

Figure 5. (Case 1)

Case 2. Suppose Q is acyclic, one of a, b, c is zero and the other two have the same
sign. That is, Q has two arrows forming a length-2 directed path. Without loss of
generality, we may assume that Q is 1 → 2 → 3, that is, a, b > 0 and c = 0. The
vectors B1 and B3 are in opposite directions.
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If d2 > 0, we let (i, j, k) = (1, 2, 3). Then condition (1a) holds and condition (1c)
holds by Lemma 3.6 (3). Note that condition (1a) would also hold for (i, j, k) =
(3, 1, 2), or (2, 3, 1); however, condition (1c) would fail for both. Thus the permutation
of (i, j, k), and hence the quadrilateral Pd, are unique in this case.

If d2 = 0, conditions (1a) and (1c) hold for (i, j, k) = (1, 2, 3) and (3, 1, 2). In both
cases, the quadrilateral degenerates to a line segment in the direction of B1. of length
max(|v1|, |v3|). The case (1,2,3) is illustrated in the second picture of Figure 6. In
particular, even though Pd may not be uniquely determined by the conditions of the
lemma, the convex hull |Pd| is unique.

d2 > 0

O

B1

B2

B3

v4

P1

P2 P3

P4

d2 = 0, v4 in the opposite direction as B1, length of |P| is |v1|

O

B1

B2

B3
v4

P1

P2 = P3

P4

d2 = 0, v4 in the same direction as B1, length of |P| is |v3|

O

B1

B2

B3

v4

P4

P1

P2 = P3

Figure 6. (Case 2)

Case 3. Suppose Q is acyclic, one of a, b, c is zero and the other two have the opposite
sign. Then exactly one vertex is adjacent to both the other two, and this vertex is
either a sink or a source.
Case 3a. If this vertex is a sink. Without loss of generality, assume Q is 1 → 3 ←
2, that is, a = 0, b > 0 > c. The vectors B1 and B2 are in the same direction.
Condition (1a) is satisfied for the two permutations (i, j, k) = (1, 2, 3) or (2, 1, 3), and
both satisfy condition (1c) by Lemma 3.6 (1). Both cases give the same |Pd|, which
is triangle with edges v1 + v2,v3,v4, in that order.
Case 3b. If this vertex is a source. Without loss of generality, assume Q is 2← 1→
3, that is, b = 0, a > 0 > c. The vectors B2 and B3 are in the same direction.
Condition (1a) is satisfied for the two permutations (i, j, k) = (1, 2, 3) or (1, 3, 2), and
both satisfy condition (1c) by Lemma 3.6 (1). Both cases give the same |Pd|, which
is a triangle with edges v1,v2 + v3,v4, in that order.
Case 4. Suppose Q is cyclic. Without loss of generality we may assume a, b, c > 0.
Condition (1a) narrows down the choices of (i, j, k) to (1, 2, 3), (2, 3, 1), or (3, 1, 2).
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O

B1

B2

B3

v4

P1

P2

P3 P4

Figure 7. (Case 3a)

O

B1

B2
B3

v4

P1

P2
P3

P4

Figure 8. (Case 3b)

O = v4

v4 = 0

B1

B2

B3 P1 = P4

P2 P3

(i, j, k) = (1, 2, 3)

P3

P1 = P4
P2

(i, j, k) = (2, 3, 1)

P2

P3
P1 = P4

(i, j, k) = (3, 1, 2)

O

v4 between v1 and v2

B1

B2

B3

v4
P4

P1 P2

P3

(i, j, k) = (2, 3, 1)

O

v4 and v1 in the same direction

B1

B2

B3

v4 P1

P2 P3

P4

(i, j, k) = (1, 2, 3)

P4

P1 P2

P3

(i, j, k) = (2, 3, 1)

Figure 9. (Case 4)

If v4 = 0, then for all of the above three choices of (i, j, k), we get the same |P|
which is a triangle with edges v1,v2,v3, in that order.

In the following we assume v4 6= 0. If v4 is strictly between v1 and v2 (respectively,
v2 and v3, v3 and v1), then the circular order condition implies the unique choice
(i, j, k) = (2, 3, 1) (resp. (3, 1, 2), (1, 2, 3)). If v4 is in the same direction as v1, then
(i, j, k) = (1, 2, 3) or (2, 3, 1). But they give the same quadrilateral which degenerates
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to a (possibly degenerated) triangle with edges v1 + v4,v2,v3, in that order. Similar
argument holds for v4 being in the same direction as v2 or v3. �

3.5. A substitution lemma. In the following lemma, we describe the effect of re-
placing the variable xi by its mutation x′i. We use the following notation.

α1 =

 −1 0 0
[a′]+ 1 0
[−c]+ 0 1

 α2 =

1 [−a]+ 0
0 −1 0
0 [b′]+ 1

 α3 =

1 0 [c′]+
0 1 [−b]+
0 0 −1



β1 =

 −1 0 0
[−a′]+ 1 0

[c]+ 0 1

 β2 =

1 [a]+ 0
0 −1 0
0 [−b′]+ 1

 β3 =

1 0 [−c′]+
0 1 [b]+
0 0 −1



Recall that a semifield P = (P,⊕, ·) is an abelian multiplicative group endowed
with an auxiliary addition ⊕ : P × P → P which is associative, commutative, and
a(b ⊕ c) = ab ⊕ ac for every a, b, c ∈ P. Let ZP be the group ring of P, and QP the
field of fractions of ZP.

Lemma 3.12. Let p = (p1, p2, p3) and r > 0. For i = 1, 2, 3 let fi be a Laurent
polynomial of the form

fi = a0x
p+b0Bi + a1x

p+b1Bi + · · ·+ anx
p+bnBi =

n∑
j=0

ajx
p+bjBi ,

where a0, . . . , an ∈ QP, 0 = b0 < b1 < · · · < bn = r, so that the exponents in fi are
points on the line segment from p to p + rBi =: q.

Let gi be the rational function obtained from fi by substituting

x1 by (p−x[a′]+
2 x

[−c]+
3 + p+x

[−a′]+
2 x

[c]+
3 )/x1 if i = 1;

x2 by (p−x[b′]+
3 x

[−a]+
1 + p+x

[−b′]+
3 x

[a]+
1 )/x2 if i = 2;

x3 by (p−x[c′]+
1 x

[−b]+
2 + p+x

[−c′]+
1 x

[b]+
2 )/x3 if i = 3.

where p−, p+ ∈ P.
If gi is a Laurent polynomial, then

gi = a′0x
p′+b′0Bi + a′1x

p′+b′1Bi + · · ·+ a′nx
p′+b′nBi =

n∑
j=0

a′jx
p′+b′jBi ,

where 0 = b′0 < b′1 < · · · < b′n = r′, so that the exponents in gi are points on the line
segment from p′ to p′ + r′Bi =: q′.

Moreover r′ = r + pi, a′0 = (p+)pia0, a′n = (p−)pian, and

p′ = αi(p), q′ = βi(q).

Proof. By symmetry, it suffices to show the case i = 1. We simply write f, g instead
of f1, g1. First assume a > 0 and c 6 0. Then

f =
n∑
j=0

ajx
p+bjB1 = xp

n∑
j=0

ajx
bjB1
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Note that the last sum does not depend on x1 since B1 =
[ 0
−a′
c

]
. Therefore

g =
[
x−1

1 xa
′

2 x
−c
3 (p− + p+xB1)

]p1
xp2

2 x
p3
3

n∑
j=0

ajx
bjB1

= x−p1
1 xp2+ap1

2 xp3−cp1
3 (p− + p+xB1)p1

n∑
j=0

ajx
bjB1

= x−p1
1 xp2+ap1

2 xp3−cp1
3

(
(p−)p1a0 + · · · terms of intermediate degree · · ·

+ (p+)p1anx
(p1+r)B1

)
.

So r′ = r + p1, a′0 = (p−)p1a0, a′n′ = (p+)p1an, and p′ = (−p1, p2 + a′p1, p3 − cp1) =
α1(p). Moreover, since q = p + rB1, we have q′ = (−p1, p2 + a′p1, p3 − cp1) + (p1 +
r)(0,−a′, c) = (−p1, p2 − a′r, p3 + cr) = (−q1, q2, q3) = β1(q). This completes the
proof in the case a > 0 and c 6 0.

The remaining cases “c > 0, a 6 0”, “a, c 6 0”, “a, c > 0” are proved similarly. �

3.6. A Newton polytope change lemma. The following lemma describes how
the Newton polytopes change under mutation. It will be used in the proof of the
support condition in our main result Theorem 5.1.

Lemma 3.13. Assume that F is a Laurent polynomial in x1, x2, x3, and after substi-
tuting

(2) x1 7→
(
p+x

[a′]+
2 x

[−c]+
3 + p−x

[−a′]+
2 x

[c]+
3

)
/x′1

in F , we get a Laurent polynomial G in x′1, x2, x3. Assume the Newton polytope R
of a Laurent polynomial F lies in a plane S parallel to the plane span(B1, B2, B3),
and R satisfies the following condition:
R is bounded by two (possibly length zero) line segments q1q2, q3q4, as well as

an “inflow” boundary Tin joining q1 and q3 and an “outflow” boundary Tout joining
q2 and q4. Each line ` parallel to B1 intersects at most once with Tin and at most
once with Tout, and ` intersects Tin if and only if it intersects Tout. So it induces a
bijection φ : Tin → Tout. Moreover, φ(q1) = q2, φ(q3) = q4, and for all t ∈ Tin,
φ(t) ∈ t+ R>0B1.

Now define
q′1 = β1(q2), q′2 = α1(q1), q′3 = β1(q4), q′4 = α1(q3),

T ′out = α1(Tin), T ′in = β1(Tout).
Then the convex hull of the support of G is the region R′ ⊂ S′, where S′ is a plane

parallel to span(B′1, B′2, B′3), such that the following condition holds:
R′ is bounded by two line segments q′1q′2, q′3q′4, as well as an “inflow” boundary

T ′in joining q′1 and q′3 and an “outflow” boundary T ′out joining q′2 and q′4. Each line `
parallel to B′1 intersect at most once with T ′in and at most once with T ′out, and it
intersects T ′in if and only if it intersects T ′out. So it induces a bijection φ′ : T ′in → T ′out.
Moreover, φ′(q′1) = q′2, φ(q′3) = q′4, and for all t ∈ T ′in, φ′(t) ∈ t+ R>0B

′
1.

Proof. First note that by the linearity of α1 and β1, R is convex if and only if R′ is
convex.

Denote F =
∑
e(p1, p2, p3)xp1

1 x
p2
2 x

p3
3 . For a fixed integer t, let

Ft =
∑

e(t, p2, p3)xt1x
p2
2 x

p3
3 = a0x

p + · · ·+ anx
q, q = p + rB1

and let
G−t = a′0x

p′ + · · ·+ an′x
q′ , q′ = p′ + r′B1
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B1

q1

q2

q3

q4

Tin

Tout

p

q

p0

q0

q′2

q′1

q′4

q′3

T ′out

T ′in

p′

q′

p′0

q′0

Figure 10. R and R′

be obtained from Ft by substitution (2). It suffices to show that if the support of Ft
(which is the segment pq) is in R if and only if the support of G−t (which is the
segment p′q′) is in R′. See Figure 10.

Assume the line through p parallel to B1 intersects with Tin and Tout at p0 and
q0, respectively. Assume the line through p′ parallel to B1 intersects with T ′out and
T ′in at p′0 and q′0, respectively. Then

α1(p) = p′, α1(p0) = p′0, β1(q) = q′, β1(q0) = q′0.

It suffices to show
(i) p ∈ p0 + R>0B1 if and only if p′ ∈ p′0 + R>0B1.
(ii) q ∈ q0 + R60B1 if and only if q′ ∈ q′0 + R60B1.

Indeed, for (i): since α1 is linear and fixes B1, and p′ − p′0 ∈ RB1, we see that
p′−p′0 = α1(p−p0) = p−p0. This implies (i). And (ii) can be proved similarly. �

4. Denominator vectors of non-initial cluster variables are
non-negative

If f is an element of the ambient field we shall use the notation f |t for the expansion
of f in the variables in the seed Σt. For t = t0, we simply denote f |t0 by f .

Recall that the d-vector of a cluster variable z is d ∈ Zn such that

z = N(x1, . . . , xn)
xd

where N(x1, . . . , xn) is a polynomial with coefficients in Z[y±i ] which is not divisible
by any cluster variable xi (1 6 i 6 n). Equivalently, we can describe d as follows.
Write z as a sum of Laurent monomials as z =

∑
p∈Zn e(p)xp, and define the support

of z as the set
supp(z) = {p | e(p) 6= 0}.

Let P1, . . . , Pm be the vertices of the convex hull of supp(z). Then

(3) d = −−−→min{p | p ∈ supp(z)} = −−−→min(P1, . . . , Pm)

It was conjectured in [9, Conjecture 7.4 (1)] that the d-vector of any non-initial
cluster variable is nonnegative, and this conjecture was proved recently in [3] using
positivity. Below, we give an alternative short proof by an elementary argument.
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Theorem 4.1. Let A be a skew-symmetrizable cluster algebra of arbitrary rank. The
d-vector of any non-initial cluster variable is nonnegative.

For the proof of the theorem we need the following lemma, where we assume
principal coefficients. Note that the proof of the lemma does not rely on the positivity
of cluster variables.

Lemma 4.2. Let A be a skew-symmetrizable cluster algebra with n mutable variables
and m−n frozen variables, and assume that it has principal coefficients at the initial
seed (that is m = 2n and the lower half of the extended exchange matrix B̃ at the
initial seed is the n× n identity matrix). If a cluster variable is a Laurent monomial,
that is, of the form cxã, where c ∈ Qr {0} and ã = (a1, . . . , am), then

(1) a1, . . . , an are all nonnegative.
(2) c = 1 and ã = ei = (0, . . . , 0, 1, 0, . . . , 0) (with 1 at the i-th coordinate) for

some 1 6 i 6 n.
As a conclusion, the Laurent expansion (in Z[x±1 , . . . , x±m]) of a non-initial cluster
variable has more than one term.

Proof. (1) If false, we assume without loss of generality that a1 < 0. Then expanding
cxã in the seed µ1(Σt0), we get x′−a1

1 cx(0,a2,...,am)/(M1 +M2)−a1 , for some monomials
M1 6= M2 (note that the inequality follows from the fact that B̃ does not have any
zero column since its lower half is an identity matrix), and this cannot be a Laurent
polynomial.

(2) Apparently c is a nonzero integer, by the Laurent phenomenon [8]. Since all
cluster variables can be written as subtraction-free expressions, by specializing the
initial variables x1 = · · · = xm = 1, we see that c is positive. Next, choose any seed
Σt that contains the cluster variable cxã; denote the cluster of this seed by {x′1(=
cxã), x′2, . . . , x′n}. For i = 1, . . . , n, let fi be the Laurent expansion of xi in {x′1(=
cxã), x′2, . . . , x′n, xn+1, . . . , xm} (so fi = xi, only written in the Laurent expansion
form to remind us). Then

(4) x′1 = cxã = cfa1
1 · · · fan

n x
an+1
n+1 · · ·xam

m .

This has the following two consequences.
(a) c = 1. Indeed, substituting x′1 = · · · = x′n = xn+1 = · · · = xm = 1 in (4),

we get 1 = c
∏n
i=1 f

ai
i (x′1 = · · · = x′n = xn+1 = · · · = xm = 1). Since all

factors in the right hand side are positive integers, we must have c = 1, and
fi(x′1 = · · · = x′n = xn+1 = · · · = xm = 1) = 1 for every 1 6 i 6 n with
ai > 0.

(b) For every 1 6 i 6 n such that ai > 0, the Laurent expansion fi must be a
Laurent monomial in Z[(x′1)±, . . . , (x′n)±, x±n+1, . . . , x

±
m] with coefficient 1. To

see this, first observe that this Laurent expansion cannot have more than one
term, otherwise the right hand side of (4) must have more than one term, so
cannot equal to x′1, a contradiction. So we can write fi = ux′b̃

(i) for some u ∈
Z and b̃(i) ∈ Zm. Next, since fi(x′1 = · · · = x′n = xn+1 = · · · = xm = 1) = 1
as in the proof of (a), we must have u = 1. This proves (b).

Now combine (b) and part (1), we see that for every 1 6 i 6 n such that ai > 0,
we must have fi = x′b̃

(i) , where b̃(i) ∈ Zn>0 × Zn−m. Thus

(5) x′1 = fa1
1 · · · fan

n x
an+1
n+1 · · ·xam

m =

 ∏
16i6n
ai>0

x′(aib̃(i))

x
an+1
n+1 · · ·xam

m .
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Since x′1, . . . , x′n, xn+1, . . . , xm are algebraically independent, the exponents on both
sides of (5) must match, that is,

(1, 0, . . . , 0) =

 ∑
16i6n
ai>0

aib̃(i)

+ (0, . . . , 0, an+1, . . . , am).

Only looking at the first n coordinates of the above equality, and letting b(i) ∈ Zn>0
be the first n coordinates of b̃(i), we have

(6) (1, 0, . . . , 0) =

 ∑
16i6n
ai>0

aib(i)

 .

Next we observe that b(i) 6= (0, . . . , 0), since otherwise, xi = fi ∈ Z[x±n+1, . . . , x
±
m],

which contradicts the assumption that x1, . . . , xm are algebraically independent. This
observation together with (6) implies that there is exactly one 1 6 i 6 n such that
ai > 0, and for this i we have ai = 1 and b(i) = (1, 0, . . . , 0). Therefore

x′1 = cxã = xix
an+1
n+1 · · ·xam

m .

Now we use the assumption that the cluster algebra has principal coefficients at
the initial seed. Under this assumption, the F -polynomial of x′1 is xan+1

n+1 · · ·xam
m . On

the other hand, by [9, Proposition 5.2], the F -polynomial is not divisible by any of
xn+1, . . . , xm. This forces an+1 = · · · = am = 0, therefore x′1 = xi is indeed an initial
cluster variable, and ã = ei. �

Remark 4.3. (1) For skew-symmetric cluster algebras, this lemma was proved in [4,
Lemma 3.7]. (Although the lemma in that paper is stated only for coefficient-free case,
the statement extends to arbitrary coefficients by their Corollary 5.3, which states that
a skew-symmetric cluster algebra with arbitrary coefficients has the proper Laurent
monomial property.)

(2) In fact, Lemma 4.2 holds for any skew-symmetrizable cluster algebras with
arbitrary coefficients of geometric type (so m can be any integer at least n), provided
that the extended exchange matrix B̃ does not have any zero column. (If the k-th
column is zero, then µk(xk) = 2/xk is not an initial cluster variable but is a Laurent
monomial, thus the lemma would fail.)

We can prove this generalization using positivity: the proof of Lemma 4.2 still holds
except the last paragraph. (Note that to prove Lemma 4.2(1) in the general setting we
need the assumption that B̃ does not have any zero column.) Then by the separation
formula [9, Theorem 3.7], we can write

(7) xix
an+1
n+1 · · ·xam

m = x′1 = X ′1|F (x1, . . . , xn; y1, . . . , yn)
FP(y1, . . . , yn)

where y1, . . . , yn ∈ P, P is the tropical semifield generated by xn+1, . . . , xm, FP is the
F -polynomial evaluated in P, and X ′1 is the cluster variable corresponding to x′1, but
computed using principal coefficients. Since x′1 = xix

an+1
n+1 · · ·xam

m is a Laurent mono-
mial with coefficient 1, X ′1 must also be a monomial with coefficient 1 (indeed, substi-
tuting x1 = · · · = xm = 1 in (7), we get X ′1(x1 = · · · = xn = y1 = · · · = yn = 1) = 1;
by the positivity of cluster variables proved by [15, 10], X ′1 is a monomial with
coefficient 1). Thus the F -polynomial of X ′1 is a monomial with coefficient 1. We can
then apply [9, Proposition 5.2] to conclude that this F -polynomial is 1. Now letting
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x1 = · · · = xn = 1 in (7), we get an+1 = · · · = am = 0. So x′1 = xi is an initial cluster
variable.
Proof of Theorem 4.1. By [9, (7.7)], d-vectors do not depend on the coefficients. So
we assume the cluster algebra A has principal coefficients, with rank n.

Assume that x[d] is a non-initial cluster variable of A, and dk < 0 for some 1 6
k 6 n. Write
(8) x[d] = x−dk

k f.

Throughout the proof we use the notation f |µi(t0) for the expansion of f in the
cluster obtained from the initial cluster by mutation in direction i. In other words,
f |µi(t0) is obtained from f by replacing xi by an expression of the form (M1 +M2)/xi,
where M1,M2 are monomials. We claim that, f and f |µi(t0) (for every i = 1, . . . , n)
are Laurent polynomials; that is, f is in the upper bound U of A associated with the
initial seed (see [1, Definition 1.1]). Indeed, f = xdk

k · x[d] is Laurent because it is a
product of two Laurent polynomials. For the same reason, f |µi(t0) = xdk

k (x[d]|µi(t0))
is also Laurent for i 6= k, and f |µk(t0) is Laurent because f does not contain neg-
ative powers of xk, that is, f =

∑
d>0 x

d
khd where hd is a Laurent polynomial in

x1, . . . , xk−1, xk+1, . . . , xn, thus substituting xk by (binomial)/(monomial) still gives
a Laurent polynomial.

Since our cluster algebra has principal coefficients, the matrix B̃ is of full rank,
and therefore [1, Corollary 1.9] implies that the upper bound U is equal to the upper
cluster algebra A.

Let Σt = (x′1, . . . , x′n, B̃′) be a seed that contains x[d] = x′` with 1 6 ` 6 n.
Rewriting (8) using Σt as the initial seed, we get
(9) x′` = (xk|t)−dk (f |t)
Since f is in the upper cluster algebra A, f |t is Laurent in x′1, . . . , x′n, xn+1, . . . , x2n.

We assert that xk|t is equal to some x′i. Otherwise, Lemma 4.2 implies that the
Laurent expansion of xk|t in the seed Σt must have more than one term, then the
right hand side of (9) must have more than one term, so cannot be equal to the left
hand side, which leads to a contradiction.

If i 6= `, then (9) gives f |t = x′`/(x′i)−dk . But this cannot be in the upper cluster
algebra. In fact, even x′`/x′i is not in the upper cluster algebra, because if we rewrite
it using the seed µi(Σt), then x′i is replaced by (M1 + M2)/x′′i whose numerator is
some binomial, and it is obvious that x′`x′′i /(M1 + M2) is not a Laurent polynomial
in µi(t). So we get a contradiction.

Therefore i = ` and (9) gives f |t = (x′`)1+dk , where dk < 0. If dk 6 −2, then
a similar argument as above gives a contradiction. So dk = −1, and f = 1, thus
x[d] = xk is an initial cluster variable, contradicting the assumption. �

5. Main Theorem
In this section we state our main result. It gives a characterization of the cluster
variables of an arbitrary rank 3 cluster algebra in terms of support, normalization
and divisibility conditions.
Theorem 5.1. Let A be a cluster algebra of rank 3 with principal coefficients and let
x[d] be a cluster variable of A with d-vector d. Let Pd be a weakly convex quadrilateral
constructed in Lemma 3.11. Then

x[d] =
∑

p∈Z3

e(p)xp =
∑

p1,p2,p3

e(p1, p2, p3)xp1
1 x

p2
2 x

p3
3

where e(p) ∈ Z[y1, y2, y3] is uniquely characterized by the following conditions.
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(SC) (Support condition) The coefficient e(p) = 0 unless p ∈ Pd. Equivalently, the
Newton polytope of x[d] is contained in Pd.

(NC) (Normalization condition) There is precisely one e(p) that has a nonzero con-
stant term, which must be 1. Moreover, the greatest common divisor of all e(p)
is 1.

(DC) (Divisibility condition) For each k = 1, 2, 3 and m < 0,( 3∏
i=1

x
[−bik]+
i + yk

3∏
i=1

x
[bik]+
i

)−m
divides

∑
p∈Z3:pk=m

e(p)xp,

in the sense that the quotient is in Z[x±1 , x
±
2 , x

±
3 , yk].

Moreover, (NC) can be replaced by
(NC′) There exists a p ∈ Z3 such that e(p) has a nonzero constant term. Moreover

for each vertex p of the convex hull |Pd|, e(p) is a monomial yα1
1 yα2

2 yα3
3 for

some αi ∈ Z>0.
And (SC) can be replaced by the following stronger condition.

(SC′) The Newton polytope of x[d] (which, by definition, is the convex hull of the
set {p | e(p) 6= 0}) is Pd.

The proof of the theorem is given in the next section. For an example see Section 7.
The theorem has the following consequence on the support of F -polynomials:

Corollary 5.2. Using the same notation as in Theorem 5.1, let g be the g-vector
of x[d]. The support of the F -polynomial is contained in the following (possibly un-
bounded) polyhedron:

Fd := R3
>0 ∩ ϕ−1

B ({p− g | p ∈ Pd})

where ϕB : R3 → R3 is the linear map q 7→ Bq, and ϕ−1
B sends a set to its preimage.

Proof. The support is in R3
>0 because the F -polynomial is in Z[y1, y2, y3]. Next, by

equation (10) (and using the notation therein), e(p) 6= 0 if and only if fijk 6= 0 for
some q = (i, j, k) satisfying Bq + g = p, that is Bq = p − g. This implies that the
support of the F -polynomial is in ϕ−1

B ({p− g | p ∈ Pd}). �

Remark 5.3. (1) It has been conjectured that the support of the F -polynomial of a
cluster variable is always saturated, which is proved in [7] for acyclic skew-symmetric
cluster algebras. We say that a non-initial cluster variable z is saturated if there are
nonnegative integers d1, . . . , dn and a convex polytope T ⊂ Rn such that supp(z)
is obtained by translating T ∩ {(

∑
j [b1,j ]+ej + [−b1,j ]+(dj − ej), . . . ,

∑
j [bn,j ]+ej +

[−bn,j ]+(dj − ej)) : 0 6 ej 6 dj for all j}. When the initial exchange matrix B,
which is the top n× n submatrix of B̃, is of full rank, it is easy to see that a cluster
variable is saturated if and only if the support of the corresponding F -polynomial is
saturated. When B is not of full rank, a cluster variable is not necessarily saturated
even if the support of the corresponding F -polynomial is saturated. Such an example
appears in the cluster algebra associated to the following acyclic quiver

2
%%

1

::

//// 3 ,

where the cluster variable obtained by mutating at 1,2,3,1,2,3 is not saturated.
(2) As computed at the end of §7, the convex polyhedron Fd is often not equal

to the Newton polytope of the F -polynomial. In fact, ϕ−1
B ({p − g | p ∈ Pd}) is a

union of parallel lines in the direction of (b̄, ā, c̄) (the vector that spans the kernel
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of ϕB). If the intersection of such a line with R3
>0 is nonempty, then the intersection

is unbounded if and only if ā, b̄, c̄ are either all in R>0 or all in R60. As a consequence,
Fd is unbounded for non-acyclic cluster algebras, so in general it only gives a rough
upper bound of the Newton polytope of the F -polynomial.

6. Proof of Theorem 5.1
We first show uniquenes. Thus we prove that, given d ∈ Z3

>0 r {(0, 0, 0)} which is a
d-vector of a non-initial cluster variable, then there is only one Laurent polynomial
satisfying the condition (SC) + (NC) + (DC) (respectively (SC) + (NC′) + (DC)).

Indeed, let f be such a Laurent polynomial. Then the Newton polytope of f and
x[d] are both contained in Pd. After changing the initial seed to some seed Σt that
contains x[d] as a cluster variable (for simplicity, assume it to be x1(t)), we see that
the Newton polytope of f |t is equal to the Newton polytope of x[d]|t, which is a one
point set Pd = {(1, 0, 0)}. But then there is obviously only one Laurent polynomial
satisfying (SC) + (NC) + (DC) (resp. (SC) + (NC′) + (DC)), namely x1(t). Thus
f |t = x1(t) = x[d]|t, which implies f = x[d].

It remains to show that a cluster variable x[d] satisfies all the conditions given in
the theorem. This is obviously true for initial cluster variables. So by Lemma 4.1 we
can assume that it is non-initial, i.e. d ∈ Z3

>0. We show each condition in a separate
subsection.

6.1. Proof of (DC). To prove (DC), we use the universal Laurent phenomenon. We
only show (DC) for k = 1 because the other cases are similar. Define h(x2, x3) = x1x

′
1.

Then
h(x2, x3) =

∏
x

[−bik]+
i + yk

∏
x

[bik]+
i = x

[a′]+
2 x

[−c]+
3 + x

[−a′]+
2 x

[c]+
3 y1

= x
[−a′]+
2 x

[−c]+
3 (xa

′

2 + xc3y1),

where the last identity holds because [m]+ = m+ [−m]+.
Denote the Laurent expansion of x[d]|µ1(t0) by

x[d]|µ1(t0) =
∑

p′1,p
′
2,p
′
3

e′(p′1, p′2, p′3)(x′1)p
′
1x
p′2
2 x

p′3
3 , where e′(p′1, p′2, p′3) ∈ Z[y′1, y′2, y′3]

and for each j = 1, 2, 3, y′j =
∏6
i=4 x

b′ij

i is a Laurent polynomial in x4 = y1, x5 = y2,
x6 = y3, where we denote by B′ = [b′ij ] the B-matrix of the seed µ1(Σt0). Then we
have ∑

p1,p2,p3

e(p1, p2, p3)xp1
1 x

p2
2 x

p3
3 =

∑
p′1,p

′
2,p
′
3

e′(p′1, p′2, p′3)(x′1)p
′
1x
p′2
2 x

p′3
3

=
∑

p′1,p
′
2,p
′
3

e′(p′1, p′2, p′3)
(
h(x2, x3)

x1

)p′1
x
p′2
2 x

p′3
3

=
∑

p′1,p
′
2,p
′
3

e′(p′1, p′2, p′3)x−p
′
1

1

(
h(x2, x3)p

′
1x
p′2
2 x

p′3
3

)
.

Regard the above as a Laurent polynomial in Z[x±2 , x
±
3 ][x±1 ], that is, as a one-variable

Laurent polynomial in x1; then, for a fixed p1 < 0, take the coefficient of xp1
1 on both

ends of the above equalities (so we should take p′1 = −p1 on the right hand side). We
then get an equality∑

p2,p3

e(p1, p2, p3)xp2
2 x

p3
3 = h(x2, x3)−p1

∑
p′2,p

′
3

e′(−p1, p
′
2, p
′
3)xp

′
2

2 x
p′3
3 .
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Thus the left hand side is divisible by h(x2, x3)−p1 , which is equivalent to the condi-
tion (DC) for k = 1.

From the proof we can also conclude that, if a Laurent polynomial satisfies (DC),
then it is in the upper bound/upper cluster algebra U = A. Indeed, (DC) implies that,
x[d] is in the upper bound U(Σt0), where Σt0 is the initial seed. Since we assume B
is skew-symmetrizable, Σt0 is totally mutable. Moreover, Σt0 is coprime because B̃ is
full rank [1, Proposition 1.8]. Therefore [1, Corollary 1.7] implies that U(Σt0) is equal
to the upper cluster algebra Ā(Σt0).

6.2. Proof of (NC). It is shown in [9] that x[d] can be expressed by its F -polynomial
F (y1, y2, y3) =

∑
i,j,k>0 fijky

i
1y
j
2y
k
3 as follows (where g = (g1, g2, g3) is its g-vector)

x[d] = xgF (y1x
−a′
2 xc3, y2x

a
1x
−b′
3 , y3x

−c′
1 xb2)

= xg1
1 x

g2
2 x

g3
3

∑
i,j,k>0

fijk(y1x
−a′
2 xc3)i(y2x

a
1x
−b′
3 )j(y3x

−c′
1 xb2)k.

So

(10) e(p) =
∑

fijky
i
1y
j
2y
k
3 , where i, j, k > 0 satisfy B

 ij
k

+ g = p.

Since the constant term of the F -polynomial of any cluster variable is 1 (Lemma 3.3),
there is only one e(p) which has a nonzero constant term, which must be 1.

Now assume the greatest common divisor of all e(p), which exists uniquely up to
sign, is h ∈ Z[y1, y2, y3] and h 6= ±1. Since one of e(p) has constant term 1, we can
choose h to have constant term 1. Thus h has at least two terms. Define

X = x[d]/h.

We observe that X still satisfies (DC), thus is in the upper cluster algebra A.
Indeed, for each m < 0, denote

Y =

 ∑
p∈Z3:pk=m

e(p)xp

/( 3∏
i=1

x
[−bik]+
i + yk

3∏
i=1

x
[bik]+
i

)−m
.

Then Y ∈ Z[x±1 , x
±
2 , x

±
3 , yk] since x[d] satisfies (DC). We need to show that Y/h is

also in Z[x±1 , x
±
2 , x

±
3 , yk]. Since Z[x±1 , x

±
2 , x

±
3 , yk] is a UFD and h divides the numer-

ator of Y , it suffices to show that h is relatively prime to the denominator of Y , or
equivalently, show that h is relatively prime to

∏3
i=1 x

[−bik]+
i + yk

∏3
i=1 x

[bik]+
i . This

is false only if h = 1 + yk and b1k = b2k = b3k = 0, which will not happen because we
assume the B-matrix is non-degenerate (see Remark 3.4).

Similar to the proof of Lemma 4.1, let Σt = (x′1, . . . , x′n, y′1, . . . , y′n, B′) be a seed
that contains x[d] = x′`. Then

(11) x′` = (X|t)(h|t).

We claim that h|t, written as a Laurent polynomial in y′1, y′2, y′3, has the same num-
ber of terms as h written as a Laurent polynomial in y1, y2, y3. Indeed, y′i = yci where
ci are the c-vectors. By Lemma 3.2, the c-vectors c1, c2, c3 ∈ Z3 are linearly indepen-
dent, so distinct monomials in y′1, y′2, y′3 convert to distinct monomials in y1, y2, y3.

By the above claim, h|t is a Laurent polynomial with at least two terms. So the
right hand side of (11) has at least two terms, but the left hand side has only one
term, a contradiction. Therefore the greatest common divisor of all e(p) is 1.
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6.3. Proof of (SC′). Proving (SC′) also proves (SC). Let x = x[d] be a cluster
variable, expressed as a Laurent polynomial in the initial seed Σt0 . Assume that
Σt0 ,Σ1,Σ2, . . . ,Σm is a sequence of mutations of seeds, and that x is a cluster variable
in Σm. We want to show that the condition (SC′) holds for x over the seed Σt0 . We
use induction on m.

If m = 0 then x is an initial cluster variable and (SC′) holds by definition of Pd.
(Recall that as exceptional cases, Pd is defined for d = (−1, 0, 0), (0,−1, 0), (0, 0, 1) at
the beginning of § 3.4). For the induction step, we need to show that the quadrilateral
Pd is compatible with the mutation. This is the longest part of the proof, consisting
of a case-by-case computation of the boundary of the quadrilaterals. Without loss of
generality, we only need to discuss the cases described in Lemma 3.11.

6.3.1. Proof of (SC′) Case 1. Assume a, b > 0 and c < 0. Using Lemma 3.11 we
obtain the quadrilateral Pd having the following vertices:

P1 = (−d1,−d2 + a′d1,−d3 − cd1 + b′d2),
P2 = (−d1,−d2,−d3 + b′d2),
P3 = (−d1 + ad2,−d2,−d3),
P4 = (−d1 + ad2 − c′d3,−d2 + bd3,−d3).

We show that the quadrilateral changes as expected under the mutation µ1: More
precisely, by changing the initial seed from t0 to µ1(t0), we substitute x1 by
(p+

1 x
a′

2 x
−c
3 + p−1 )/x′1 in x[d], and get a cluster variable x′[d′] =

∑
e′(p)x′p =∑

e′(p1, p2, p3)(x′1)p1xp2
2 x

p3
3 with d-vector d′. Then we need to show that the convex

hull of the set {p|e′(p) 6= 0} is |PB′

d′ |, where B′ is as follows (note that a, a′ > 0 and
c, c′ < 0 by assumption):

B′ := µ1(B) =

 0 −a c′

a′ 0 b+ sgn(a′)[(−a′)(−c′)]+
−c −b′ + sgn(c)[ca]+ 0

 =

 0 −a c′
a′ 0 b
−c −b′ 0

 .
First, we use Lemma 3.13 to determine the convex hull of {p|e′(p) 6= 0}. Let Tin be

the segment P1P4, Tout be the polygonal chain(1) P2P3P4, and define points P ′1, . . . , P ′4
to satisfy α1(P1P4) = P ′1P

′
4 and β1(P2P3P4) = P ′1P

′
2P
′
3, that is,

P ′1 = α1(P1) = β1(P2) = (d1,−d2,−d3 + b′d2),
P ′2 = β1(P3) = (d1 − ad2,−d2,−d3),
P ′3 = β1(P4) = (d1 − ad2 + c′d3,−d2 + bd3,−d3),
P ′4 = α1(P4) = (d1 − ad2 + c′d3,−a′d1 + (aa′ − 1)d2 + (b− a′c′)d3,

cd1 − acd2 + (cc′ − 1)d3).

Then Lemma 3.13 guarantees that convex hull of the set {p|e′(p) 6= 0} is |P ′1P ′2P ′3P ′4|.
(See Figure 11.)

Next, we explicitly determine d′. By (3), d′ is equal to the −−−→min of the vertices of
the convex hull |P ′1P ′2P ′3P ′4|, therefore

(12) d′ = −−−→min(P ′1, . . . , P ′4).

(1)A polygonal chain P1P2 · · ·Pn is a curve consisting of line segments connecting the consecutive
vertices Pi and Pi+1 for i = 1, . . . , n− 1.
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B1

q1 = P1

q2 = P2

q3 = q4 = P4

P3

Tin

Tout q′1 = q′2 = P ′1

q′3 = P ′4

q′4 = P ′3
P ′2

T ′out

T ′in

Figure 11. (SC′), Case 1, µ1. (Left: projection to xy-plane. Right:
projection to xy-plane followed by reflection about y-axis.)

Thus
d′1 = −min(d1, d1 − ad2, d1 − ad2 + c′d3) = ad2 − c′d3 − d1,
d′2 = −min(−d2,−d2 + bd3,−a′d1 + (aa′ − 1)d2 + (b− a′c′)d3)

= −min(−d2,−d2 + bd3,−d2 + a′d′1 + bd3) = d2,
d′3 = −min(−d3 + b′d2,−d3, cd1 − acd2 + (cc′ − 1)d3)

= −min(−d3 + b′d2,−d3,−d3 − cd′1) = d3.

Lastly, we show that x′[d′] satisfies (SC′), that is, the convex hull of the set
{p|e′(p) 6= 0} is equal to |PB′

d′ |, or equivalently,

|P ′1P ′2P ′3P ′4| = |PB′

d′ |.

If d′1 < 0, then by Lemma 4.1, d′ = (−1, 0, 0), and (SC′) is trivially true. So in the
following we assume d′1 > 0.

We shall show that we can actually take PB′

d′ = P ′1P
′
2P
′
3P
′
4, that is, P ′1, . . . , P ′4

satisfy the two conditions in Lemma 3.11 (recall that PB′

d′ may not be unique but its
convex hull |PB′

d′ | is).
The condition (2) follows from (12).
The condition (1) holds for (i, j, k) = (2, 3, 1). Indeed:
For (1a), we have b′23 = b > 0 and b′31 = −c > 0.
For (1b), we have v′i = d′iB

′
i for i = 1, 2, 3, v′4 = −v′1−v′2−v′3 = (ad2−c′d3, a

′d1−
aa′d2+(a′c′−b)d3,−cd1+(b′+ac)d2−cc′d3). It is straightforward to check P ′1P ′2 = v′2,
P ′2P

′
3 = v′3, P ′3P ′4 = v′1.

For (1c), we have B′2, B′3, B′1,v′4 are in circular order because B′2, B′3, B′1 are strictly
in the same half plane, and

DB′

−b̄c̄
ā

 =

 0 −ā c̄
ā 0 b̄

−c̄ −b̄ 0

−b̄c̄
ā

 = 0⇒ B′

−b̄c̄
ā

 = 0⇒ −b̄B′1 + c̄B′2 + āB′3 = 0

implies that B′3 = (−c̄/ā)B′2 + (b̄/ā)B′1 where both coefficients are positive. So (1c)
follows from Lemma 3.6.

This completes the proof that the quadrilateral changes as expected under the
mutation µ1.

The rest of the proof is similar to the above discussion of the quadrilateral change
after µ1. For this reason we simply point out the difference.

To show that the quadrilateral changes as expected under the mutation µ2: Substitute
x2 by (p+

2 x
b
3 + p−2 x

a′

1 )/x2 in x[d], and get x′[d′]. Define

B′ := µ2(B) =

 0 −a ab− c′
a′ 0 −b

c− a′b′ b′ 0

 .
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Note that

DB′
[
āb̄/δ2 − c̄

ā

]
=

 0 −ā āb̄/δ2 − c̄
ā 0 −b̄

c̄− āb̄/δ2 b̄ 0

 b̄

āb̄/δ2 − c̄
ā

 = 0

implies b̄B′1 + (āb̄/δ2 − c̄)B′2 + āB′3 = 0.
The y-coordinate of P1 is −d2 + ad1 and the y-coordinate of P4 is −d2 + bd3; thus

their difference is −a′d1 + bd3. We will distinguish three cases according to the sign
of this difference.

(i) Suppose −a′d1 + bd3 < 0. Geometrically, it means that P4 is strictly lower
than P1 after projection to xy-plane; see Figure 12. Since Tin and Tout are
taken relative to B2 in this case, we have Tin = P1P2 and Tout = P1P4P3.
Thus in the notation of Lemma 3.13, we have q1 = P1, q2 = P1, q3 = P2,
q4 = P3, T ′out = α2(Tin), T ′in = β2(Tout). Therefore Lemma 3.13 implies

P ′1 = β2(P1) = ((aa′ − 1)d1 − ad2, d2 − a′d1,−d3 − cd1 + b′d2),
P ′2 = α2(P1) = (−d1, d2 − a′d1,−d3 + (a′b′ − c)d1),
P ′3 = α2(P2) = β2(P3) = (−d1, d2,−d3),
P ′4 = β2(P4) = (−d1 + (ab− c′)d3, d2 − bd3,−d3).

B2

P1

P2

P4

P3

Tin
Tout

P ′2

P ′3

P ′4

P ′1

T ′out
T ′in

Figure 12. (SC′), Case 1, µ2, (i). (Left: projection to xy-plane.
Right: projection to xy-plane followed by reflection about x-axis.)

We claim that x′[d′] also satisfies (SC′). If d′2 < 0, then d′ = (0,−1, 0),
and (SC′) is trivially true. So we assume d′2 > 0. The condition (2) of
Lemma 3.11 determines the vector d′ = (d′1, d′2, d′3):

d′2 = −min(d2 − a′d1, d2, d2 − bd3)
= a′d1 − d2, (because of the assumption −a′d1 + bd3 < 0)

d′3 = −min(−d3 − cd1 + b′d2,−d3 + (a′b′ − c)d1,−d3) = d3,
d′1 = −min((aa′ − 1)d1 − ad2,−d1,−d1 + (ab− c′)d3)

= −min(−d1 + ad′2,−d1,−d1 + (ab− c′)d3) = d1.

We show that the three conditions in Lemma 3.11 (1) hold for (i, j, k) =
(2, 1, 3):

(1a) b′21 = a′ > 0 and b′13 = ab− c′ > 0.
(1b) Use v′4 = (aa′d1 − ad2 − (ab− c′)d3,−a′d1 + bd3,−cd1 + b′d2).
(1c) B′2, B′1, B′3 are not strictly in the same half plane, and v′4 = λ2B

′
2 +

λ3B
′
3 with λ2 = (−cd1 + b′d2)/b′ > 0, λ3 = (−a′d1 + bd3)/(−b) > 0. So

B′2, B
′
1, B

′
3,v′4 are in circular order by Lemma 3.6.
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(ii) Suppose −a′d1 + bd3 > 0. Geometrically, it means that P4 is strictly higher
than P1 after projection to xy-plane; see Figure 13. So Tin = P4P1P2 and
Tout = P3P4. Therefore Lemma 3.13 implies

P ′1 = α2(P1) = (−d1, d2 − a′d1,−d3 + (a′b′ − c)d1),
P ′2 = α2(P2) = β2(P3) = (−d1, d2,−d3),
P ′3 = β2(P4) = (−d1 + (ab− c′)d3, d2 − bd3,−d3),
P ′4 = α2(P4) = (−d1 + ad2 − c′d3, d2 − bd3,−b′d2 + (bb′ − 1)d3).

B2

P1

P2

P4

P3

Tin

Tout

P ′4

P ′2

P ′1

P ′3

T ′out T ′in

Figure 13. (SC′), Case 1, µ2, (ii). (Left: projection to xy-plane.
Right: projection to xy-plane followed by reflection about x-axis.)

We claim that x′[d′] also satisfies (SC′). Like before, assume d′2 > 0. The
condition (2) of Lemma 3.11 determines the vector d′ = (d′1, d′2, d′3):
d′2 = −min(d2 − a′d1, d2, d2 − bd3) = bd3 − d2, (because of the assumption

−a′d1 + bd3 > 0)
d′1 = −min(−d1,−d1 + (ab− c′)d3,−d1 + ad2 − c′d3) = d1,
d′3 = −min(−d3 + (a′b′ − c)d1,−d3,−b′d2 + (bb′ − 1)d3) = −min(−d3 +

(a′b′ − c)d1,−d3,−d3 + b′d′2 = d3.
We show that the three conditions in Lemma 3.11 (1) hold for (i, j, k) =

(1, 3, 2):
(1a) b′13 = ab− c′ > 0 and b′32 = b′ > 0.
(1b) Use v′4 = (−ad2 + c′d3, bd3 − a′d1, (a′b′ − c)d1 + b′d2 − bb′d3).
(1c) B′1, B′3, B′2 are not in the same half plane, and v′4 = λ1B

′
1 +λ2B

′
2 with

λ1 = (bd3 − a′d1)/a′ > 0, λ2 = (−ad2 + c′d3)/(−a) > 0. So B′1, B′3, B′2,v′4 are
in circular order by Lemma 3.6.

(iii) Suppose −a′d1 + bd3 = 0. Geometrically, it means that P4 is at the same
height at P1 after projection to xy-plane; see Figure 14. So Tin = P1P2 and
Tout = P3P4.

The Newton polytope of x′[d′] is in a triangle P ′1P
′
2P
′
3, determined by

α2(P1P2) = P ′1P
′
2 and β2(P3P4) = P ′2P

′
3. We can view this as a degenerate

case of either (i) or (ii), and the proof of (SC′) still works. Note that these
two Pd gives the same triangle convex hull |Pd|.

To show that the quadrilateral changes as expected under the mutation µ3:
Substitute x3 by (p+

3 + p−1 x
b
2x
−c′
1 )/x3 in x[d], and get x′[d′].

B′ := µ3(B) = [b′ij ] =

 0 a c′

−a′ 0 −b
−c b′ 0

 .
Applying Lemma 3.12 to Tin = P1P2P3, Tout = P1P4 , we obtain the quadri-
lateral P ′1P ′2P ′3P ′4, determined by α3(P1P2P3) = P ′2P

′
3P
′
4 and β3(P1P4) =
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B2

P1

P2

P4

P3

Tin Tout

P ′1

P ′3

P ′2 P ′4

T ′out T ′in

As a degenerate of (i)

P ′4

P ′2

P ′1 P ′3

T ′out T ′in

As a degenerate of (ii)

Figure 14. (SC′), Case 1, µ2, (iii). (Left: projection to xy-plane.
Middle and Right: projection to xy-plane followed by reflection about
x-axis.)

P ′1P
′
4. See Figure 15. Thus

P ′1 = β3(P1) = (−d1 − c′(−cd1 + b′d2 − d3),−d2 + a′d1 + b(−d3 − cd1 + b′d2),
d3 + cd1 − b′d2),

P ′2 = α3(P1) = (−d1,−d2 + a′d1, d3 + cd1 − b′d2),
P ′3 = α3(P2) = (−d1,−d2, d3 − b′d2),
P ′4 = α3(P3) = β3(P4) = (−d1 + ad2,−d2, d3).

B3

P2

P3

P1

P4

Tin

Tout

P ′2

P ′4

P ′3

P ′1

T ′out T ′in

Figure 15. (SC′), Case 1, µ3. (Left: projection to yz-plane. Right:
projection to yz-plane followed by reflection about y-axis.)

To show x′[d′] satisfies (SC′). We can assume d′3 > 0 as before. Then
d′1 = d1, d′2 = d2, d′3 = −cd1+b′d2−d3, v′4 = (−c′(−cd1+b′d2−d3)−ad2, a

′d1+
b(−d3 − cd1 + b′d2), cd1 − b′d2). We claim the conditions in Lemma 3.11 (1)
hold for (i, j, k) = (3, 1, 2). Indeed:

For (1a): b′31 = −c > 0, b′12 = a > 0.
For (1a): straightforward check.
For (1a):B′3, B′1, B′2 are strictly in the same half-plane, andB′1 = (a′/b)B′3+

(−c/b′)B′2 where both coefficients are nonnegative.

6.3.2. Proof of (SC′) Case 2. Assume Q is of the form 1 → 2 → 3, that is, a, b > 0
and c = 0.

This is a degenerated case of Case 1. We shall only explain the difference in the
argument.

For µ1: assume d′1 > 0. The vectors B1 and B3 are in opposite direction, so P1P2
is parallel to P3P4. The point P ′3 is on the line segment P ′2P ′4, so |Pd| is the triangle
P ′1P

′
2P
′
4. The proof is same as Case 1; the circular order condition (1c) trivially holds

(where (i, j, k) = (2, 3, 1)) because B′1 and B′3 are in the same direction. See Figure 16.
For µ2: same argument as in Case 1.
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B1

P1

P2

P4

P3

Tin

Tout
P ′1

P ′4

P ′3

P ′2

T ′out

T ′in

Figure 16. (SC′), Case 2, µ1. (Left: projection to xy-plane. Right:
projection to xy-plane followed by reflection about y-axis.)

For µ3: assume d′3 > 0. The point P ′2 is on the line segment P ′1P ′3, so |Pd| is the
triangle P ′1P ′3P ′4. The proof is same as Case 1; the circular order condition trivially
holds (where (i, j, k) = (3, 1, 2)) because B′1 and B′3 are in the same direction. See
Figure 17.

B3

P2

P3

P1

P4

Tin Tout

P ′2

P ′4

P ′3 P ′1

T ′out T ′in

Figure 17. (SC′), Case 2, µ3. (Left: projection to yz-plane. Right:
projection to yz-plane followed by reflection about y-axis.)

6.3.3. Proof of (SC′) Case 3.
(a) Assume Q is of the form 1 → 3 ← 2, that is, a = 0, b > 0 > c. Thus B1 and

B2 are in the same direction.
This is degenerated from Case 1. We shall explain the difference.
For µ1: Note B′1 = (0, 0,−c), B′2 = (0, 0,−b′), B′3 = (c′, b, 0), (i, j, k) =

(2, 3, 1). To show that B′2, B′3, B′1,v′4 are in circular order, we use the fact
that B′2 and B′1 are in opposite directions. See Figure 18.

B1

P1

P2

P4P3

Tin

Tout
P ′2

P ′4

P ′1

P ′3

T ′out

T ′in

Figure 18. (SC′), Case 3, µ1 or µ2. (Left: projection to xz-plane.
Right: projection to xz-plane followed by reflection about z-axis.)

For µ2: Note B′1 = (0, 0, c), B′2 = (0, 0, b′), B′3 = (−c′,−b, 0). The three
cases described in (Case 1, µ2) degenerate to:
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(i): If bd3 < 0. Impossible since we assume d3 > 0.
(ii) and (iii): If bd3 > 0. Take (i, j, k) = (1, 3, 2). Vectors B′1, B′3, B′2,v′4 are

in circular order because B′1, B′2 are in opposite directions. Also see Figure 18.
For µ3: This is the same argument as Case 1.

(b) Assume Q is of the form 2 ← 1 → 3, that is, a > 0, b = 0, c < 0. Then B2
and B3 are in the same direction.

This case is also degenerated from Case 1. We shall explain the difference.
For µ1: This is the same argument as in Case 1.
For µ2: As before, assume d′2 = bd3 − d2 = −d2 > 0. Since we assume

d2 > 0, we must have d′2 = d2 = 0. Note B′1 = (0, a′, c), B′2 = (−a, 0, 0),
B′3 = (−c′, 0, 0). The three cases described in (Case 1, µ2) degenerate to:

(i) and (iii): If −a′d1 6 0. Then take (i, j, k) = (2, 1, 3). Vectors
B′2, B

′
1, B

′
3,v′4 are in circular order because B′2, B

′
3 are in opposite direc-

tions.
(ii): If −a′d1 > 0. Then d1 < 0, d = (−1, 0, 0) and x[d] = x1, which is a

trivial case.

B2

P1

P2
P3

P4

Tin Tout

P ′2

P ′3
P ′4

P ′1

T ′out T ′in

Figure 19. (SC′), Case 4, µ2 or µ3. (Left: projection to xz-plane.
Right: projection to xz-plane followed by reflection about z-axis.)

For µ3: Take (i, j, k) = (3, 1, 2). Vectors B′3, B′1, B′2,v′4 are in circular order
because B′3 = (c′, 0, 0) and B′2 = (a, 0, 0) are in opposite directions.

6.3.4. Proof of (SC′), Case 4. Suppose a, b, c > 0. Renumbering vertices (1, 2, 3) as
(2, 3, 1) or (3, 1, 2) if necessary, we can assume that B1, B2, B3,v4 are in circular order
(and still satisfy b12, b23, b31 > 0); thus
(13)

(−ad2 + c′d3, a
′d1 − bd3,−cd1 + b′d2) = v4

= λ1B1 + λ3B3 = (−c′λ3,−a′λ1 + bλ3, cλ1)

for some real numbers λ1, λ3 > 0. So by Lemma 3.11, we get the same expression for
P1, . . . , P4 as in Case 1:

P1 = (−d1,−d2 + a′d1,−d3 − cd1 + b′d2),
P2 = (−d1,−d2,−d3 + b′d2),
P3 = (−d1 + ad2,−d2,−d3),
P4 = (−d1 + ad2 − c′d3,−d2 + bd3,−d3).

It is easy to check that d = −−−→min(P1, . . . , P4) by observing ad2− c′d3 = c′λ3 > 0 and
−cd1 + b′d2 = cλ1 > 0.

To show that the quadrilateral changes as expected under the mutation µ1: If µ1(Q)
is acyclic, then we can apply the previous argument for µ1(Q) to conclude that the
quadrilateral is compatible with the mutation. So in below we assume that µ1(Q) is
still cyclic, i.e. ac− b′ > 0, or equivalently, a′c′ − b > 0.
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By changing the initial seed from Σt0 to µ1(Σt0), we substitute x1 by (p+
1 x

a′

2 +
p−1 x

c
3)/x1 in x[d], and get x′[d′]. Using Lemma 3.12, we obtain that the support of

x′[d′] lies in the quadrilateral P ′1P ′2P ′3P ′4, determined by α1(P1P4P3) = P ′1P
′
4P
′
3 and

β1(P2P3) = P ′1P
′
2. Thus P ′1 = α1(P1) = β1(P2), P ′2 = β1(P3), P ′3 = α1(P3), P ′4 =

α1(P4), and more explicitly

P ′1 = (d1, −d2, −d3 + b′d2 − cd1),
P ′2 = (d1 − ad2, −d2, −d3 − cd1 + acd2),
P ′3 = (d1 − ad2, (aa′ − 1)d2 − a′d1, −d3),
P ′4 = (d1 − ad2 + c′d3, −a′d1 + (aa′ − 1)d2 + (b− a′c′)d3, −d3).

See Figure 20.
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P2

P4

P3

Tin

Tout
P ′1

P ′3

P ′4

P ′2

T ′out

T ′in

Figure 20. (SC′), Case 4, µ1. (Left: projection to xy-plane. Right:
projection to xy-plane followed by reflection about y-axis.)

We claim that this x′[d′] also satisfies (SC). If d′1 < 0, it is trivially true. So we
assume d′1 > 0. Denote

B′ = µ1(B) =

 0 −a c′

a′ 0 b− a′c′
−c ac− b′ 0

 .
By (3), we have d = −−→min(P ′1, P ′2, P ′3, P ′4), thus d′1 = ad2 − d1, d′2 = d2, d′3 = d3,
because d′1 = ad2 = d1 > 0. The vector v′4 is equal to v′4 = −v′1 − v′2 − v′3 =
(ad2 − c′d3, a

′d1 − aa′d2 + (a′c′ − b)d3, b
′d2 − cd1).

We show that the conditions in Lemma 3.11 (1) are all satisfied for (i, j, k) =
(2, 1, 3):

For (1a): We have b′21 = a′ > 0 and b′13 = c′ > 0.
For (1b): This is straightforward.
For (1c): We have B′2, B′1, B′3,v′4 are in circular order because B′2, B′1, B′3 are not

in the same half plane, and v′4 = (b′d2 − cd1)/(ac − b′)B′2 − (a′d1 − aa′d2 + (a′c′ −
b)d3)/(a′c′−b)B′3 where the first coefficient = cλ1/(ac−b′) > 0, the second coefficient
= (a′λ1 + (a′c′ − b)λ3)/(a′c′ − b) > 0.

To show that the quadrilateral changes as expected under the mutation µ2: Like above,
we can assume µ2(Q) is cyclic, i.e. ab− c′ > 0, a′b′ − c > 0. Define

B′ = [b′ij ] =

 0 −a ab− c′
a′ 0 −b

c− a′b′ b′ 0

 .
There are three cases to consider:

(i) Suppose −a′d1 + bd3 < 0. See Figure 21.
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Figure 21. (SC′), Case 4, µ2, (i). (Left: projection to xy-plane.
Right: projection to xy-plane followed by reflection about x-axis.)

The quadrilateral Pd is determined by α2(P1P2) = P ′2P
′
3 and β2(P1P4P3) =

P ′1P
′
4P
′
3. Thus

P ′1 = β2(P1) = ((aa′ − 1)d1 − ad2, d2 − a′d1,−d3 − cd1 + b′d2),
P ′2 = α2(P1) = (−d1, d2 − a′d1,−d3 + (a′b′ − c)d1),
P ′3 = α2(P2) = β2(P3) = (−d1, d2,−d3),
P ′4 = β2(P4) = (−d1 + (ab− c′)d3, d2 − bd3,−d3).

We claim that x′[d′] also satisfies (SC’). Like before, assume d′2 > 0. First
compute:
d′1 = d1,
d′2 = a′d1 − d2 (because of the assumption −a′d1 + bd3 < 0),
d′3 = d3 (recall −cd1 + b′d2 = cλ1 > 0).
v′4 = (aa′d1 − ad2 − (ab− c′)d3,−a′d1 + bd3,−cd1 + b′d2).

Then show that the conditions in Lemma 3.11 (1) hold for (i, j, k) = (2, 1, 3):
(1a) We have b′21 = a > 0 and b′13 = ab− c > 0.
(1b) This is straightforward.
(1c) We have B′2, B′1, B′3 are not strictly in the same half plane, and v′4 =

λ′2B
′
2 +λ′2B′3 with λ′2 = (−cd1 +b′d2)/b′ = cλ1/b > 0, λ′3 = (a′d1−bd3)/b > 0,

so B′2, B′1, B′3,v′4 are in circular order.
(ii) Suppose −a′d1 + bd3 > 0. See Figure 22.
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Figure 22. (SC′), Case 4, µ2, (ii). (Left: projection to xy-plane.
Right: projection to xy-plane followed by reflection about x-axis.)
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The quadrilateral Pd is determined by α2(P4P1P2) = P ′4P
′
1P
′
2 and

β2(P3P4) = P ′2P
′
3. Thus

P ′1 = α2(P1) = (−d1, d2 − a′d1,−d3 + (a′b′ − c)d1),
P ′2 = α2(P2) = β2(P3) = (−d1, d2,−d3),
P ′3 = β2(P4) = (−d1 + (ab− c′)d3, d2 − bd3,−d3),
P ′4 = α2(P4) = (−d1 + ad2 − c′d3, d2 − bd3,−b′d2 + (bb′ − 1)d3).

We claim that this x′[d′] also satisfies (SC). Like before, assume d′2 > 0. We
have
d′1 = −min(−d1,−d1 + (ab− c′)d3,−d1 + ad2 − c′d3)

= d1 because ab− c′ > 0 and ad2 − c′d3 = c′λ3 > 0,
d′2 = −min(d2 − a′d1, d2, d2 − bd3) = bd3 − d2 because a′d1 < bd3,
d′3 = −min(−d3 + (a′b′ − c)d1,−d3,−b′d2 + (bb′ − 1)d3)

= −min(−d3 + (a′b′ − c)d1,−d3, b
′d′2 − d3)

= d3 because a′b′ − c > 0 and d′2 > 0,
v′4 = (−ad2 + c′d3, bd3 − a′d1, (a′b′ − c)d1 + b′d2 − bb′d3).
To show that the conditions in Lemma 3.11 (1) hold for (i, j, k) = (1, 3, 2), the
only nontrivial condition is (1c) B′1, B′3, B′2,v′4 are in circular order. To see
this, note thatB′1, B′3, B′2 are not in the same half plane, and v′4 = λ′1B

′
1+λ′2B′2

with λ′1 = (bd3 − a′d1)/a′ > 0, λ′2 = (ad2 − c′d3)/a′ = c′λ3/a
′ > 0.

(iii) Suppose −a′d1 + bd3 = 0. See Figure 23. The Newton polytope of x′[d′] is a
triangle. We can view this as a degenerate case of either (i) or (ii), and the
proof of (SC′) therein still holds.
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P4
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Tin Tout

P ′1

P ′3

P ′2 P ′4

T ′out T ′in

As a degenerate of (i)

P ′4

P ′2

P ′1 P ′3

T ′out T ′in

As a degenerate of (ii)

Figure 23. (SC′), Case 4, µ2, (iii). (Left: projection to xy-plane.
Middle and Right: projection to xy-plane followed by reflection about
x-axis.)

To show that the quadrilateral changes as expected under the mutation µ3: Assume
µ3(Q) is cyclic, i.e. bc− a′ > 0, b′c′ − a > 0. See Figure 24. We have

B′ := µ3(B) =

 0 a− b′c′ c′
bc− a′ 0 −b
−c b′ 0

 .
The quadrilateral Pd is determined by α3(P2P3) = P ′2P

′
3 and β3(P2P1P4) = P ′1P

′
4P
′
3.

See Figure 24. Thus
P ′1 = β3(P1) = (−d1, (a′ − bc)d1 + (bb′ − 1)d2 − bd3, cd1 − b′d2 + d3),
P ′2 = β3(P2) = (−d1, (bb′ − 1)d2 − bd3,−b′d2 + d3),
P ′3 = α3(P2) = (−d1 + b′c′d2 − c′d3,−d2,−b′d2 + d3),
P ′4 = α3(P3) = β3(P4) = (−d1 + ad2 − c′d3,−d2, d3).
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Figure 24. (SC′), Case 4, µ3. (Left: projection to yz-plane. Right:
projection to yz-plane followed by reflection about y-axis.)

To show x′[d′] satisfies (SC′). We can assume d′3 > 0 as before. Compute

d′3 = −min(cd1 − b′d2 + d3,−b′d2 + d3, d3) = b′d2 − d3,

d′2 = −min((a′ − bc)d1 + (bb′ − 1)d2 − bd3, (bb′ − 1)d2 − bd3,−d2)
= −min(−d2 + (bc− a′)λ1 + bλ3, bd

′
3 − d2,−d2) = d2,

d′1 = −min(−d1,−d1 + b′c′d2 − c′d3,−d1 + ad2 − c′d3)
= −min(−d1,−d1 + c′d′3,−d1 + c′λ3) = d1,

v′4 = (−ad2 + c′d3, (a′ − bc)d1 + bb′d2 − bd3, cd1 − b′d2).

We claim the conditions in Lemma 3.11 (1) holds for (i, j, k) = (1, 3, 2). Indeed:
For (1a): We have b′13 = c′ > 0, b′32 = b′ > 0.
For (1b): This is a straightforward check.
For (1c): We have B′1, B′3, B′2 are not in the same half-plane, and v′4 = λ′1B

′
1 +λ′2B′2

with coefficients λ′1 = ((a′−bc)d1+bb′d2−bd3)/(bc−a′) = ((bc−a′)λ1+bλ3)/(bc−a′) >
0, λ′2 = (−ad2 + c′d3)/(a− b′c′) = c′λ3/(b′c′ − a) > 0.

This completes the proof of (SC′) for all four cases.

6.4. Proof of (NC′). The existence of e(p) with nonzero constant term follows
from (NC). To show the second part of (NC′), it suffices to show that the property
that e(p) is a monomial for each vertex of Pd is invariant under mutation. Suppose
therefore that p ∈ Z3 is a vertex of the weakly convex quadrilateral Pd of the cluster
variable x[d] with respect to the initial seed Σt0 , and suppose that e(p) = yr11 y

r2
2 y

r3
3 .

Let P′ be the weakly convex quadrilateral of the same cluster variable but with respect
to the seed Σµ1(t0). Thus P′ is obtained from P by substituting x1 by (M1 +M2)/x1
(substituting x2, x3 can be argued similarly). By Lemma 3.13, the vertices of |P′| are
obtained as either

(a) α1(p), where p is a vertex of |Pd|, the intersection of the line p + RB1 with
the quadrilateral Pd is a line segment |pq| with q = p + rB1 (r > 0), or

(b) β1(q), where q is a vertex of |Pd|, the intersection of the line q + RB1 with
the quadrilateral Pd is a line segment |pq| with p = q − rB1 (r > 0).

We only need to consider (a) because (b) can be argued similarly. We use
Lemma 3.12 with f =

∑
e(p)xp the Laurent expansion of x[d] in the seed Σt0 and g

its Laurent expansion in the seed Σµ1(t0). The vertex p corresponds to the term a0x
p

(with b0 = 0) in the lemma and it transforms to the new vertex p′ yielding the term
a′0x

p′ (with b′0 = 0) in g. The lemma implies a′0 = (p+)p1a0 and thus

e′(p′) = (p+)p1e(p) =
(∏

i

y
[ei]+
i

)p1

e(p) =
∏
i

y
ri+p1[ei]+
i
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which is a Laurent monomial in y1, y2, y3, so it is also a Laurent monomial in y′1, y′2, y′3.
By induction on the number of mutations it follows that e(p) is a monomial for all
vertices p of all |Pd|. This completes the proof of condition (NC′) and of Theorem 5.1.

7. Example
Example 7.1. Consider a = b = −c = 2:

Q = 2

2
��

1

2

@@

2 // 3

B =

 0 2 2
−2 0 2
−2 −2 0



Consider the cluster variable x[6, 2, 1], obtained by the mutation sequence {1, 2, 3}.
The quadrilateral Pd is computed as in Lemma 3.11 as follows. Start with vertices

P̃1 = (0, 0, 0) P̃2 = d1B1 = (0,−12,−12)
P̃3 = P̃1 + d2B2 = (4,−12,−16) P̃4 = P̃3 + d3B3 = (6,−10,−16)

and then shift by the vector

−−−→min(P̃1, P̃2, P̃3, P̃4)− d = −(0,−12,−16)− (6, 2, 1) = (−6, 10, 15)

to obtain the vertices of Pd as follows

P1 = (−6, 10, 15), P2 = (−6,−2, 3), P3 = (−2,−2,−1), P4 = (0, 0,−1).

On the other hand, the cluster has the following Laurent expansion.

x[6, 2, 1] = x−6
1 x−2

2 x−1
3
(
x12

2 x
16
3 + 6x10

2 x
14
3 y1 + 2x2

1x
8
2x

10
3 y

2
1y2 + 15x8

2x
12
3 y

2
1

+8x2
1x

6
2x

8
3y

3
1y2 + 20x6

2x
10
3 y

3
1 + x4

1x
4
2x

4
3y

4
1y

2
2 + 12x2

1x
4
2x

6
3y

4
1y2

+x6
1x

2
2y

6
1y

2
2y3 + 15x4

2x
8
3y

4
1 + 2x4

1x
2
2x

2
3y

5
1y

2
2 + 8x2

1x
2
2x

4
3y

5
1y2 + 6x2

2x
6
3y

5
1

+x4
1y

6
1y

2
2 + 2x2

1x
2
3y

6
1y2 + x4

3y
6
1
)
.

We project the support to 2nd and 3rd exponents of x (that is, draw a point of
coordinate (i, j) if xi2x

j
3 appears in x[6, 2, 1]). We obtain the picture in Figure 25.

Figure 25. Support of x[6, 2, 1]. The blue dots are the support, the
red polytope is the Newton polytope.
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The monomials in corresponding positions are:

x−6
1 x10

2 x15
3

6x−6
1 x8

2x13
3 y1

15x−6
1 x6

2x11
3 y2

1
20x−6

1 x4
2x9

3y3
1 2x−4

1 x6
2x9

3y2
1y1

15x−6
1 x2

2x7
3y4

1 8x−4
1 x4

2x7
3y3

1y2
6x−6

1 x5
3y5

1 12x−4
1 x2

2x5
3y4

1y2
x−6

1 x−2
2 x3

3y6
1 8x−4

1 x3
3y5

1y2 x−2
1 x2

2x3
3y4

1y2
2x−4

1 x−2
2 x3y6

1y2 2x−2
1 x3y5

1y2
2

x−2
1 x−2

2 x−1
3 y6

1y2
2 x−1

3 y6
1y2

2y3


.

Let us consider what happens if we substitute x1 by its mutation (p+
1 x

a
2x
−c
3 +

p−1 )/x1 = (x2
2x

2
3 + y1)/x1 in x[6, 2, 1] (because p+

1 = 1, p−1 = y1). The 7 terms with
x−6

1 (that is, the line segment |P1P2|) add up to be

f = x−6
1 x10

2 x
15
3 + 6x−6

1 x8
2x

13
3 y1 + · · ·+ x−6

1 x−2
2 x3

3y
6
1 = x−2

2 x3
3

(
x2

2x
2
3 + y1

x1

)6

.

So after the substitution, we get x6
1x
−2
2 x3

3, which also follows in general using
Lemma 3.12 (1), with p = (−6, 10, 15), q = (−6,−2, 3) = p + 6(0,−2,−2): since
the first and last term of g in that lemma will have exponents p′ = α1(p) = q′ =
β1(q) = (6,−2, 3), which is P ′1.

In general, let f be the sum of the terms containing x−constant1 . Then after substi-
tution the two endpoints are mapped by α1 and β1, both being linear maps. Consider
the line segments parallel to line P1P2 and in the quadrilateral P1P2P3P4. The two
ends of each line segment are mapped by maps α1 and β1. So the segment P1P4
(i.e. the set of right endpoints) is mapped by α1, P2P3P4 (i.e. the set of left end-
points) is mapped by β1. Their image encloses a new quadrilateral Pd

′ = P ′1P
′
2P
′
3P
′
4

(which actually degenerates to a triangle) with

P ′1 = (6,−2, 3), P ′2 = (2,−2,−1), P ′3 = (0, 0,−1), P ′4 = (0, 0,−1).

Remark 7.2. Note that the F -polynomial of x[6, 2, 1] is 1+6y1+2y2
1y2+15y2

1+8y3
1y2+

20y3
1 + y4

1y
2
2 + 12y4

1y2 + y6
1y

2
2y3 + 15y4

1 + 2y5
1y

2
2 + 8y5

1y2 + 6y5
1 + y6

1y
2
2 + 2y6

1y2 + y6
1 . Its

Newton polytope has vertices (0, 0, 0), (6, 2, 1), (6, 2, 0), (6, 0, 0), (4, 2, 0). In contrast,
the region Fd as defined in Corollary 5.2 is a convex polyhedron with vertices (0, 0, 0),
(6, 0, 0), (8, 0, 2), (6, 2, 0), (5, 3, 0), (8, 0, 3), which contains the Newton polytope of the
F -polynomial as a proper subset.

8. Quantum analogue
In this section, we prove that Theorem 5.1 generalizes to the quantum cluster algebras
introduced in [2]. We consider here only principal coefficients. The statement with
non-principal coefficients should follow easily from this.

First we fix some notation. For a nonzero integer δ, define [n]δ = (vδn−v−δn)/(vδ−
v−δ) (note that [n]δ = [n]−δ) and define the quantum binomial coefficient (where
k, n ∈ Z, k > 0) [

n
k

]
δ

= [n]δ[n− 1]δ · · · [n− k + 1]δ
[k]δ[k − 1]δ · · · [1]δ

.

Define
(x+ y)nδ =

∑
k>0

[
n
k

]
δ

xkyn−k.

For example,

(x+ y)3
5 = y3 + (v5 + 1 + v−5)xy2 + (v5 + 1 + v−5)x2y + y3.
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Remark 8.1. To see the motivation of the above definition: consider two quasi-
commuting variables X, Y with Y X = v2δXY . Denote X(i,j) := vijδXiY j . Then
the above quantum binomial coefficients satisfy

(X + Y )n =
∑
k>0

[
n
k

]
δ

vk(n−k)δXkY n−k =
∑
k>0

[
n
k

]
δ

X(k,n−k).

Let B be a skew-symmetrizable matrix, D a positive diagonal matrix such that
DB is skew-symmetric. Let

Λ =
[

0 −D
D −DB

]
, B̃ =

[
B
I

]
.

Recall that the based quantum torus T (Λ) is the Z[v±]-algebra with a distinguished
Z[v±]-basis {Xe : e ∈ Z2n} and the multiplication is given by

XeXf = vΛ(e,f)Xe+f (e, f ∈ Z2n)

where Λ(e, f) = eTΛf .
We introduce the following convention to represent a quantum Laurent polynomial

using a commutative Laurent polynomial: namely, we define a function

ϕ : Z[v±][x1, . . . , x6]→ T (Λ)∑
ai1,...,i6x

i1
1 · · ·x

i6
6 7→

∑
ai1,...,i6X

(i1,...,i6).

Recall that we denote y1 = x4, y2 = x5, y3 = x6.
We have the following generalization of our main result.

Theorem 8.2. A quantum cluster variable x[d] with d-vector d can be written as

x[d] = ϕ
∑

p∈Z3

e(p)xp = ϕ
∑

p1,p2,p3

e(p1, p2, p3)xp1
1 x

p2
2 x

p3
3

where e(p) ∈ Z[v±][y1, y2, y3] is uniquely characterized by the following conditions:
(SC) (Support condition) The coefficient e(p) = 0 unless p ∈ Pd. Equivalently, the

Newton polytope of x[d] is contained in Pd.
(NC) (Normalization condition) There is only one e(p) which has a nonzero con-

stant term, which must be 1. Moreover, the greatest common divisor of all
e(p) is 1.

(DC) (Divisibility condition) For each k = 1, 2, 3, if pk < 0, then( 3∏
i=1

x
[−bik]+
i + yk

3∏
i=1

x
[bik]+
i

)−pk

δk

divides
∑

p1,...,p̂k,...,p3

e(p1, p2, p3)xp1
1 x

p2
2 x

p3
3

where the notation p̂k under the sum means that we have pk fixed and the
other two pi run over all integers.

Moreover, (NC) can be replaced by:
(NC′) There is a coefficient e(p) with nonzero constant term, and for each vertex p

of the convex hull |Pd|, e(p) is a monomial in y1, y2, y3.
And (SC) can be replaced by a stronger condition:

(SC′) The Newton polytope of x[d] is equal to Pd.

Proof. The proof is similar to Theorem 5.1. The main difference is the quantum
version of the divisibility condition (DC), which follows easily from Lemma 8.3 below.

�
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Lemma 8.3. Fix 1 6 k 6 3 and fix pk ∈ Z. Let f be a Laurent polynomial

f =
∑

p1,...,p̂k,...,p3

e(p1, p2, p3)xp1
1 x

p2
2 x

p3
3

where e(p1, p2, p3) ∈ Z[v±][y1, y2, y3]. Then ϕ(f) ∈ T (Λ) is a Laurent polynomial in

Z[v±][X±1 , . . . , (X ′k)±, . . . , X±3 , X
±
4 , X

±
5 , X

±
6 ]

if and only if

(∏
x

[−bik]+
i + yk

∏
x

[bik]+
i

)[−pk]+

δk

divides f.

Proof. Without loss of generality assume k = 1. So p1 is fixed throughout the proof.
Let B̃′ = µ1(B̃). By definition of mutation of quantum cluster variables,

X1 = X ′
−e1+[B̃′1]+ +X ′

−e1+[−B̃′1]+ = X ′
−e1+[−B̃1]+ +X ′

−e1+[B̃1]+ ,

where the second equality holds because B̃′1 = −B̃1. We introduce the following
notation: for p, q ∈ Z3, let

X[p
q] = X(p1,p2,p3,q1,q2,q3), X ′[

p
q] = X ′

(p1,p2,p3,q1,q2,q3)
.

We denote the Laurent expansion of ϕ(f) in the original cluster (respectively in the
cluster {X ′1, X2, X3, X4, X5, X6}) as follows

ϕ(f) =
∑

p2,p3,q
epqX

[p
q]

respectively ϕ(f) =
∑

p′2,p
′
3,q′

e′p′q′X
′[p′

q′]
 ,

where p = (p1, p2, p3) and p′ = (p′1, p′2, p′3) and p′1 = −p1. So e(p1, p2, p3) =∑
q epqX

[p
q]. For convenience of notation, we let p̄ = (0, p2, p3), and similar for p̄′.

Then for fixed p1,

∑
p,q

epqv
−Λ([p̄

q], p1e1)X[p̄
q]Xp1

1 =
∑
p′,q′

e′p′q′X
′[p′

q′].

Now we prove the lemma in two cases: p1 < 0 and p1 > 0.

Case 1 p1 < 0. We shall show that

(14) epq =
∑
k

e′p′q′

[
−p1

k

]
δ1

.
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Indeed,∑
p,q

epqv
−Λ([p̄

q], p1e1)X[p̄
q]

=
∑
p′,q′

e′p′q′X
′[p′

q′]X−p1
1

=
∑
p′,q′

e′p′q′X
′[p′

q′](X ′−e1+[−B̃1]+ +X ′
−e1+[B̃1]+)−p1

∗=
∑
p′,q′

e′p′q′X
′[p′

q′]∑
k

[
−p1

k

]
δ1

X ′
p1e1+k[−B̃1]++(−p1−k)[B̃1]+

=
∑

p′,q′,k

e′p′q′

[
−p1

k

]
δ1

vΛ′([p̄
q],p1e1+k[−B̃1]++(−p1−k)[B̃1]+)X ′[

p′
q′]+p1e1+k[−B̃1]++(−p1−k)[B̃1]+

∗∗=
∑

p′,q′,k

e′p′q′

[
−p1

k

]
δ1

vΛ′([p̄
q],p1e1+k[−B̃1]++(−p1−k)[B̃1]+)X[p̄′

q′]+k[−B̃1]++(−p1−k)[B̃1]+ .

(The equality “ ∗=” is because

X ′
−e1+[−B̃1]+X ′

−e1+[B̃1]+ = v2Λ′(−e1+[−B̃1]+,−e1+[B̃1]+)X ′
−e1+[B̃1]+X ′

−e1+[−B̃1]+

where Λ′(−e1 + [−B̃1]+,−e1 + [B̃1]+) = Λ′(−e1 + [−B̃1]+, B̃1) = Λ(e1, B̃1) = −δ1.
The equality “∗∗=” is because the exponent of X ′ has zero in the first coordinate, so
we can replace X ′ by X). Now comparing the coefficients of X[p

q] on both sides, we
get

(15) epqv
−Λ([p̄

q], p1e1) =
∑
k

e′p′q′

[
−p1

k

]
δ1

vΛ′([p̄
q],p1e1+k[−B̃1]++(−p1−k)[B̃1]+)

where p′ and q′ are determined by[
p̄′
q′

]
+ k[−B̃1]+ + (−p1 − k)[B̃1]+ =

[
p̄
q

]
which can be rewritten as

(16)
[
p̄′
q′

]
+ (−p1)[−B̃1]+(−p1 − k)B̃1 =

[
p̄
q

]
.

We claim that the exponents of v on both sides of (15) are equal. Indeed,

Λ′
([

p̄
q

]
, p1e1 + k[−B̃1]+ + (−p1 − k)[B̃1]+

)
= Λ

([
p̄
q

]
,−p1e1 + p1[B̃1]+ + k[−B̃1]+ + (−p1 − k)[B̃1]+

)
= Λ

([
p̄
q

]
,−p1e1 + k[−B̃1]+ − k[B̃1]+

)
= −Λ

([
p̄
q

]
, p1e1

)
− kΛ

([
p̄
q

]
, B̃1

)
.
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Moreover, Λ(
[
p̄
q

]
, B̃1) is the 1st coordinate of the following row vector, so is equal

to 0: [
p̄
q

]T
ΛB̃ =

[
p̄
q

]T [ 0 −D
D −DB

] [
B
I

]
=
[
p̄
q

]T [−D
0

]
= −p̄TD

= −
[
0 p2 p3

] δ1 0 0
0 δ2 0
0 0 δ3

 = −
[
0 p2δ2 p3δ3

]
.

Thus we can cancel out the exponents of v on both sides of (15), and obtain (14).
The lemma then follows easily from (14):

f =
∑
p,q

epqx
[p

q] =
∑

p,q,k

e′p′q′

[
−p1

k

]
δ1

x[p
q] (which satisfies (16))

=
∑

p′,q′,k

e′p′q′

[
−p1

k

]
δ1

x[p̄′
q′]+p1e1+(−p1)[−B̃1]+(−p1−k)B̃1

=
∑
p′,q′

e′p′q′x
[p̄′

q′]+p1e1+(−p1)[−B̃1]+
∑
k

[
−p1

k

]
δ1

x(−p1−k)B̃1

=
∑
p′,q′

e′p′q′x
[p̄′

q′]+p1e1+(−p1)[B̃1]+(1 + xB̃1
)−p1

δ1

=
∑
p′,q′

e′p′q′x
[p̄′

q′]+p1e1+(−p1)[B̃1]+
∏

x
−[−bi1]+
i

(∏
x

[−bi1]+
i + y1

∏
x

[bi1]+
i

)−p1

δ1

therefore f is divisible by
(∏

x
[−bi1]+
i + y1

∏
x

[bi1]+
i

)−p1

δ1
if and only if finitely many

e′p′q′ are nonzero.

Case 2 p1 > 0. Similar to above, we have

e′p′q′ =
∑
k

epq

[
p1

k

]
δ1

.

So it is always true that only finitely many e′p′q′ are nonzero. Meanwhile, the divisi-
bility condition becomes “1 divides f” which is also always true. �

Example 8.4. The coefficients of the quantum cluster variable x[6, 2, 1] corresponding
to Example 7.1 are shown in the following matrix, where [n] := [n]1:

1
[6]

[6][5]
[2]

[6][5][4]
[3][2] [2]

[6][5]
[2] [2][4]

[6] [3][4]
1 [2][4] 1

[2] [2]
1 1


.

Acknowledgements. The authors wish to thank the referee for providing many valu-
able suggestions, particularly for suggesting of a reference of Lemma 3.2.

Algebraic Combinatorics, Vol. 3 #6 (2020) 1329



Kyungyong Lee, Li Li & Ralf Schiffler

References
[1] Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Cluster algebras. III. Upper bounds

and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1–52.
[2] Arkady Berenstein and Andrei Zelevinsky, Quantum cluster algebras, Adv. Math. 195 (2005),

no. 2, 405–455.
[3] Peigen Cao and Fang Li, Positivity of denominator vectors of skew-symmetric cluster algebras,

J. Algebra 515 (2018), 448–455.
[4] Giovanni Cerulli Irelli, Bernhard Keller, Daniel Labardini-Fragoso, and Pierre-Guy Plamondon,

Linear independence of cluster monomials for skew-symmetric cluster algebras, Compos. Math.
149 (2013), no. 10, 1753–1764.

[5] Man Wai Cheung, Mark Gross, Greg Muller, Gregg Musiker, Dylan Rupel, Salvatore Stella, and
Harold Williams, The greedy basis equals the theta basis: a rank two haiku, J. Combin. Theory
Ser. A 145 (2017), 150–171.

[6] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky, Quivers with potentials and their repre-
sentations II: applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), no. 3, 749–790.

[7] Jiarui Fei, Combinatorics of F -polynomials, https://arxiv.org/abs/1909.10151, 2019.
[8] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15

(2002), no. 2, 497–529.
[9] , Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), no. 1, 112–164.
[10] Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich, Canonical bases for cluster

algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 497–608.
[11] Meghal Gupta, A formula for F -polynomials in terms of C-vectors and stabilization of F -

polynomials, https://arxiv.org/abs/1812.01910, 2018.
[12] Kyungyong Lee, Li Li, Dylan Rupel, and Andrei Zelevinsky, The existence of greedy bases in

rank 2 quantum cluster algebras, Adv. Math. 300 (2016), 360–389.
[13] Kyungyong Lee, Li Li, and Andrei Zelevinsky,Greedy elements in rank 2 cluster algebras, Selecta

Math. (N.S.) 20 (2014), no. 1, 57–82.
[14] Kyungyong Lee and Ralf Schiffler, A combinatorial formula for rank 2 cluster variables, J.

Algebraic Combin. 37 (2013), no. 1, 67–85.
[15] , Positivity for cluster algebras, Ann. of Math. (2) 182 (2015), no. 1, 73–125.
[16] Gregg Musiker, Ralf Schiffler, and Lauren Williams, Positivity for cluster algebras from surfaces,

Adv. Math. 227 (2011), no. 6, 2241–2308.
[17] Tomoki Nakanishi and Andrei Zelevinsky, On tropical dualities in cluster algebras, in Algebraic

groups and quantum groups, Contemp. Math., vol. 565, Amer. Math. Soc., Providence, RI, 2012,
pp. 217–226.

[18] Pierre-Guy Plamondon, Cluster characters for cluster categories with infinite-dimensional mor-
phism spaces, Adv. Math. 227 (2011), no. 1, 1–39.

Kyungyong Lee, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA
School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
E-mail : kyungyong.lee@ua.edu; klee1@kias.re.kr

Li Li, Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309-
4479, USA
E-mail : li2345@oakland.edu

Ralf Schiffler, Department of Mathematics, University of Connecticut, Storrs, CT 06269-
1009, USA
E-mail : schiffler@math.uconn.edu

Algebraic Combinatorics, Vol. 3 #6 (2020) 1330

https://arxiv.org/abs/1909.10151
https://arxiv.org/abs/1812.01910
mailto:kyungyong.lee@ua.edu; klee1@kias.re.kr
mailto:li2345@oakland.edu
mailto:schiffler@math.uconn.edu

	1. Introduction
	2. Rank 2
	2.1. Greedy basis
	2.2. Characterization using support conditions

	3. Preparation
	3.1. Definition, notations, and facts in cluster algebras
	3.2. Circular order
	3.3. Weakly convex quadrilaterals
	3.4. Weakly convex quadrilaterals in rank 3 cluster algebras
	3.5. A substitution lemma
	3.6. A Newton polytope change lemma

	4. Denominator vectors of non-initial cluster variables are non-negative
	5. Main Theorem
	6. Proof of Theorem 5.1
	6.1. Proof of (DC)
	6.2. Proof of (NC)
	6.3. Proof of (SC')
	6.4. Proof of (NC')

	7. Example
	8. Quantum analogue
	References

