Semi-infinite Young tableaux and standard monomial theory for semi-infinite Lakshmibai–Seshadri paths
Algebraic Combinatorics, Tome 3 (2020) no. 5, pp. 1141-1163.

We introduce semi-infinite Young tableaux, and show that these tableaux give a combinatorial model for the crystal basis of a level-zero extremal weight module over the quantized universal enveloping algebra of untwisted affine type A. The definition and characterization of these tableaux are based on standard monomial theory for semi-infinite Lakshmibai–Seshadri paths and a tableau criterion for the semi-infinite Bruhat order on affine Weyl groups of type A, which are also proved in this paper.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.130
Mots-clés : Semi-infinite Young tableau, semi-infinite Lakshmibai–Seshadri path, semi-infinite Bruhat order, affine Weyl group, quantum affine algebra, extremal weight module, crystal basis.
Ishii, Motohiro 1

1 Department of Mathematics Cooperative Faculty of Education Gunma University Maebashi Gunma 371-8510 Japan
@article{ALCO_2020__3_5_1141_0,
     author = {Ishii, Motohiro},
     title = {Semi-infinite {Young} tableaux and standard monomial theory for semi-infinite {Lakshmibai{\textendash}Seshadri} paths},
     journal = {Algebraic Combinatorics},
     pages = {1141--1163},
     publisher = {MathOA foundation},
     volume = {3},
     number = {5},
     year = {2020},
     doi = {10.5802/alco.130},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/alco.130/}
}
TY  - JOUR
AU  - Ishii, Motohiro
TI  - Semi-infinite Young tableaux and standard monomial theory for semi-infinite Lakshmibai–Seshadri paths
JO  - Algebraic Combinatorics
PY  - 2020
SP  - 1141
EP  - 1163
VL  - 3
IS  - 5
PB  - MathOA foundation
UR  - http://www.numdam.org/articles/10.5802/alco.130/
DO  - 10.5802/alco.130
LA  - en
ID  - ALCO_2020__3_5_1141_0
ER  - 
%0 Journal Article
%A Ishii, Motohiro
%T Semi-infinite Young tableaux and standard monomial theory for semi-infinite Lakshmibai–Seshadri paths
%J Algebraic Combinatorics
%D 2020
%P 1141-1163
%V 3
%N 5
%I MathOA foundation
%U http://www.numdam.org/articles/10.5802/alco.130/
%R 10.5802/alco.130
%G en
%F ALCO_2020__3_5_1141_0
Ishii, Motohiro. Semi-infinite Young tableaux and standard monomial theory for semi-infinite Lakshmibai–Seshadri paths. Algebraic Combinatorics, Tome 3 (2020) no. 5, pp. 1141-1163. doi : 10.5802/alco.130. http://www.numdam.org/articles/10.5802/alco.130/

[1] Akasaka, Tatsuya; Kashiwara, Masaki Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci., Volume 33 (1997) no. 5, pp. 839-867 | DOI | MR | Zbl

[2] Beck, Jonathan; Nakajima, Hiraku Crystal bases and two-sided cells of quantum affine algebras, Duke Math. J., Volume 123 (2004) no. 2, pp. 335-402 | MR | Zbl

[3] Björner, Anders; Brenti, Francesco Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005 | MR | Zbl

[4] Fulton, William Young Tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[5] Ishii, Motohiro Path model for representations of generalized Kac–Moody algebras, J. Algebra, Volume 379 (2013), pp. 277-300 | DOI | MR | Zbl

[6] Ishii, Motohiro; Naito, Satoshi; Sagaki, Daisuke Semi-infinite Lakshmibai–Seshadri path model for level-zero extremal weight modules over quantum affine algebras, Adv. Math., Volume 290 (2016), pp. 967-1009 | DOI | MR | Zbl

[7] Joseph, Anthony Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 29, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl

[8] Joseph, Anthony; Lamprou, Polyxeni A Littelmann path model for crystals of generalized Kac–Moody algebras, Adv. Math., Volume 221 (2009) no. 6, pp. 2019-2058 | DOI | MR | Zbl

[9] Kac, Victor G. Infinite Dimensional Lie Algebras, Results in Mathematics and Related Areas (3), Cambridge University Press, Cambridge, 1990 (3rd edition) | DOI | Zbl

[10] Kang, Seok-Jin; Kashiwara, Masaki; Misra, Kailash C.; Miwa, Tetsuji; Nakashima, Toshiki; Nakayashiki, Atsushi Perfect crystals of quantum affine Lie algebras, Duke Math. J., Volume 68 (1992) no. 3, pp. 499-607 | DOI | MR | Zbl

[11] Kashiwara, Masaki Crystal bases of modified quantized enveloping algebra, Duke Math. J., Volume 73 (1994) no. 2, pp. 383-413 | DOI | MR | Zbl

[12] Kashiwara, Masaki On crystal bases, Representations of groups (Banff, AB, 1994) (CMS Conf. Proc.), Volume 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155-197 | MR | Zbl

[13] Kashiwara, Masaki Similarity of crystal bases, Lie algebras and their representations (Seoul, 1995) (Contemp. Math.), Volume 194, Amer. Math. Soc., Providence, RI, 1996, pp. 177-186 | DOI | MR | Zbl

[14] Kashiwara, Masaki On level-zero representations of quantized affine algebras, Duke Math. J., Volume 112 (2002) no. 1, pp. 117-175 | DOI | MR | Zbl

[15] Kashiwara, Masaki; Nakashima, Toshiki Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra, Volume 165 (1994) no. 2, pp. 295-345 | DOI | MR | Zbl

[16] Kato, Syu; Naito, Satoshi; Sagaki, Daisuke Equivariant K-theory of semi-infinite flag manifolds and Pieri–Chevalley formula (2017) (https://arxiv.org/abs/1702.02408)

[17] Kwon, Jae-Hoon Crystal graphs and the combinatorics of Young tableaux, Handbook of Algebra, Volume 6, Elsevier/North-Holland, Amsterdam, 2009, pp. 473-504 | DOI | MR | Zbl

[18] Lam, Thomas; Shimozono, Mark Quantum cohomology of G/P and homology of affine Grassmannian, Acta Math., Volume 204 (2010) no. 1, pp. 49-90 | DOI | MR | Zbl

[19] Lenart, Cristian; Naito, Satoshi; Sagaki, Daisuke; Schilling, Anne; Shimozono, Mark A uniform model for Kirillov–Reshetikhin crystals I: Lifting the parabolic quantum Bruhat graph, Int. Math. Res. Not. IMRN (2015) no. 7, pp. 1848-1901 | DOI | MR | Zbl

[20] Lenart, Cristian; Naito, Satoshi; Sagaki, Daisuke; Schilling, Anne; Shimozono, Mark Quantum Lakshmibai–Seshadri paths and root operators, Schubert calculus—Osaka 2012 (Adv. Stud. Pure Math.), Volume 71, Math. Soc. Japan, Tokyo, 2016, pp. 267-294 | DOI | MR | Zbl

[21] Littelmann, Peter A Littlewood–Richardson rule for symmetrizable Kac–Moody algebras, Invent. Math., Volume 116 (1994) no. 1-3, pp. 329-346 | DOI | MR | Zbl

[22] Littelmann, Peter Paths and root operators in representation theory, Ann. of Math. (2), Volume 142 (1995) no. 3, pp. 499-525 | DOI | MR | Zbl

[23] Littelmann, Peter A plactic algebra for semisimple Lie algebras, Adv. Math., Volume 124 (1996) no. 2, pp. 312-331 | DOI | MR | Zbl

[24] Nakajima, Hiraku Extremal weight modules of quantum affine algebras, Representation theory of algebraic groups and quantum groups (Adv. Stud. Pure Math.), Volume 40, Math. Soc. Japan, Tokyo, 2004, pp. 343-369 | DOI | MR | Zbl

[25] Peterson, Dale Quantum Cohomology of G/P (1997) (Lect. Notes, Massachusetts Institute of Technology, Cambridge, MA)

[26] Shimozono, Mark Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties, J. Algebraic Combin., Volume 15 (2002) no. 2, pp. 151-187 | DOI | MR | Zbl

Cité par Sources :