Bernardi gave a formula for the Tutte polynomial
Révisé le :
Accepté le :
Publié le :
Mots-clés : Hypergraph, bipartite graph, ribbon structure, Tutte polynomial, interior polynomial, embedding activity, root polytope, dissection, shelling order,
@article{ALCO_2020__3_5_1099_0, author = {K\'alm\'an, Tam\'as and T\'othm\'er\'esz, Lilla}, title = {Hypergraph polynomials and the {Bernardi} process}, journal = {Algebraic Combinatorics}, pages = {1099--1139}, publisher = {MathOA foundation}, volume = {3}, number = {5}, year = {2020}, doi = {10.5802/alco.129}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.129/} }
TY - JOUR AU - Kálmán, Tamás AU - Tóthmérész, Lilla TI - Hypergraph polynomials and the Bernardi process JO - Algebraic Combinatorics PY - 2020 SP - 1099 EP - 1139 VL - 3 IS - 5 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.129/ DO - 10.5802/alco.129 LA - en ID - ALCO_2020__3_5_1099_0 ER -
Kálmán, Tamás; Tóthmérész, Lilla. Hypergraph polynomials and the Bernardi process. Algebraic Combinatorics, Tome 3 (2020) no. 5, pp. 1099-1139. doi : 10.5802/alco.129. http://www.numdam.org/articles/10.5802/alco.129/
[1] The Bernardi process and torsor structures on spanning trees, Int. Math. Res. Not. IMRN (2018) no. 16, pp. 5120-5147 | DOI | MR | Zbl
[2] A characterization of the Tutte polynomial via combinatorial embeddings, Ann. Comb., Volume 12 (2008) no. 2, pp. 139-153 | DOI | MR | Zbl
[3] Tutte polynomial, subgraphs, orientations and sandpile model: new connections via embeddings, Electron. J. Combin., Volume 15 (2008) no. 1, Research Paper 109 | MR | Zbl
[4] Universal Tutte polynomial (2020) (https://arxiv.org/pdf/2004.00683.pdf)
[5] A lattice point counting generalisation of the Tutte polynomial (2016) (https://arxiv.org/pdf/1604.00962.pdf) | Zbl
[6] Root polytopes and strong orientations of bipartite graphs (in preparation)
[7] Combinatorics of hypergeometric functions associated with positive roots, The Arnold–Gelfand mathematical seminars, Birkhäuser Boston, Boston, MA, 1997, pp. 205-221 | DOI | MR | Zbl
[8] A combinatorial model for the Homfly polynomial, European J. Combin., Volume 11 (1990) no. 6, pp. 549-558 | DOI | MR | Zbl
[9] A version of Tutte’s polynomial for hypergraphs, Adv. Math., Volume 244 (2013), pp. 823-873 | DOI | MR | Zbl
[10] Root polytopes, parking functions, and the HOMFLY polynomial, Quantum Topol., Volume 8 (2017) no. 2, pp. 205-248 | DOI | MR | Zbl
[11] Root polytopes, Tutte polynomials, and a duality theorem for bipartite graphs, Proc. Lond. Math. Soc. (3), Volume 114 (2017) no. 3, pp. 561-588 | DOI | MR | Zbl
[12] Interior polynomial for signed bipartite graphs and the HOMFLY polynomial (https://arxiv.org/abs/1705.05063)
[13] Normal polytopes arising from finite graphs, J. Algebra, Volume 207 (1998) no. 2, pp. 409-426 | DOI | MR | Zbl
[14] Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009) no. 6, pp. 1026-1106 | DOI | MR | Zbl
[15] Combinatorial optimization. Polyhedra and efficiency. Vol. B, Algorithms and Combinatorics, 24, Springer-Verlag, Berlin, 2003, p. i-xxxiv and 649–1217 (Matroids, trees, stable sets, Chapters 39–69) | MR | Zbl
[16] A contribution to the theory of chromatic polynomials, Canad. J. Math., Volume 6 (1954), pp. 80-91 | DOI | MR | Zbl
- Spanning hypertrees, vertex tours and meanders, European Journal of Combinatorics, Volume 119 (2024), p. 29 (Id/No 103805) | DOI:10.1016/j.ejc.2023.103805 | Zbl:1542.05041
- A geometric proof for the root-independence of the greedoid polynomial of Eulerian branching greedoids, Journal of Combinatorial Theory. Series A, Volume 206 (2024), p. 22 (Id/No 105891) | DOI:10.1016/j.jcta.2024.105891 | Zbl:1540.05068
-
-vectors of graph polytopes using activities of dissecting spanning trees, Algebraic Combinatorics, Volume 6 (2023) no. 6, pp. 1637-1651 | DOI:10.5802/alco.318 | Zbl:1533.52012 - The Sandpile Group of a Trinity and a Canonical Definition for the Planar Bernardi Action, Combinatorica, Volume 42 (2022) no. S2, p. 1283 | DOI:10.1007/s00493-021-4798-9
- Root polytopes and Jaeger-type dissections for directed graphs, Mathematika, Volume 68 (2022) no. 4, pp. 1176-1220 | DOI:10.1112/mtk.12163 | Zbl:1521.05057
- On coefficients of the interior and exterior polynomials, arXiv (2022) | DOI:10.48550/arxiv.2201.12531 | arXiv:2201.12531
- The sandpile group of a trinity and a canonical definition for the planar Bernardi action, arXiv (2019) | DOI:10.48550/arxiv.1905.01689 | arXiv:1905.01689
Cité par 7 documents. Sources : Crossref, NASA ADS, zbMATH