In this paper we study algebraic and combinatorial properties of symmetric Grothendieck polynomials and their dual polynomials by means of the boson-fermion correspondence. We show that these symmetric functions can be expressed as a vacuum expectation value of some operator that is written in terms of free-fermions. By using the free-fermionic expressions, we obtain alternative proofs of determinantal formulas and Pieri type formulas.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Symmetric Grothendieck polynomials, Boson-fermion correspondence.
@article{ALCO_2020__3_5_1023_0, author = {Iwao, Shinsuke}, title = {Grothendieck polynomials and~the~boson-fermion correspondence}, journal = {Algebraic Combinatorics}, pages = {1023--1040}, publisher = {MathOA foundation}, volume = {3}, number = {5}, year = {2020}, doi = {10.5802/alco.116}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.116/} }
TY - JOUR AU - Iwao, Shinsuke TI - Grothendieck polynomials and the boson-fermion correspondence JO - Algebraic Combinatorics PY - 2020 SP - 1023 EP - 1040 VL - 3 IS - 5 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.116/ DO - 10.5802/alco.116 LA - en ID - ALCO_2020__3_5_1023_0 ER -
Iwao, Shinsuke. Grothendieck polynomials and the boson-fermion correspondence. Algebraic Combinatorics, Tome 3 (2020) no. 5, pp. 1023-1040. doi : 10.5802/alco.116. http://www.numdam.org/articles/10.5802/alco.116/
[1] Free fermions and tau-functions, J. Geom. Phys., Volume 67 (2013), pp. 37-80 | DOI | MR | Zbl
[2] A Littlewood–Richardson rule for the -theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl
[3] Noncommutative Schur functions and their applications, Discrete Math., Volume 193 (1998) no. 1-3, pp. 179-200 | DOI | MR | Zbl
[4] Grothendieck polynomials and the Yang–Baxter equation, Proc. Formal Power Series and Alg. Comb (1994), pp. 183-190
[5] Young Tableaux: With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, Cambridge University Press, 1996 | DOI | Zbl
[6] Degeneracy loci classes in -theory — determinantal and Pfaffian formula, Adv. Math., Volume 320 (2017), pp. 115-156 | DOI | MR | Zbl
[7] -theoretic analogues of factorial Schur - and -functions, Adv. Math., Volume 243 (2013), pp. 22-66 | DOI | MR | Zbl
[8] The discrete Toda equation revisited: dual -Grothendieck polynomials, ultradiscretization, and static solitons, J. Phys. A, Volume 51 (2018) no. 13, 134002 | DOI | MR | Zbl
[9] Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci., Volume 19 (1983) no. 3, pp. 943-1001 | DOI | MR | Zbl
[10] Bombay lectures on highest weight representations of infinite dimensional Lie algebras, Advanced Series in Mathematical Physics, 29, World scientific, 2013 | MR | Zbl
[11] On some quadratic algebras I : combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss–Catalan, universal Tutte and reduced polynomials, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 12 (2016), Paper no. 002, 172 pages | DOI | MR | Zbl
[12] Finite sum Cauchy identity for dual Grothendieck polynomials, Proc. Japan Acad. Ser. A Math. Sci., Volume 90 (2014) no. 7, pp. 87-91 | DOI | MR | Zbl
[13] Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math., Volume 295 (1982) no. 11, pp. 629-633 | MR | Zbl
[14] Symmetry and flag manifolds, Invariant theory (Montecatini, 1982) (Lecture Notes in Math.), Volume 996, Springer, Berlin (1983), pp. 118-144 | DOI | MR | Zbl
[15] Combinatorial aspects of the -theory of Grassmannians, Ann. Comb., Volume 4 (2000) no. 1, pp. 67-82 | DOI | MR | Zbl
[16] Symmetric functions and Hall polynomials, Oxford university press, 1998 | Zbl
[17] Solitons: Differential equations, symmetries and infinite dimensional algebras, Cambridge Tracts in Mathematics, 135, Cambridge University Press, 2012
[18] Vertex models, TASEP and Grothendieck polynomials, J. Phys. A, Volume 46 (2013) no. 35, p. 355201, 26 | DOI | MR | Zbl
[19] -theoretic boson-fermion correspondence and melting crystals, J. Phys. A, Volume 47 (2014) no. 44, p. 445202, 30 | DOI | MR | Zbl
[20] Universal factorial Schur -functions and their duals (2018) (https://arxiv.org/abs/1812.03328)
[21] Stable Grothendieck polynomials and -calculus (2011) (unpublished)
[22] Duality and deformations of stable Grothendieck polynomials, J. Algebraic Combin., Volume 45 (2017) no. 1, pp. 295-344 | DOI | MR | Zbl
Cité par Sources :