Let be the edge ideal of a graph . We give various general upper bounds for the regularity function , for , addressing a conjecture made by the authors and Alilooee. When is a gap-free graph and locally of regularity 2, we show that for all . This is a weaker version of a conjecture of Nevo and Peeva. Our method is to investigate the regularity function , for , via local information of .
Révisé le :
Accepté le :
Publié le :
Mots-clés : Castelnuovo–Mumford regularity, edge ideals, powers of ideals.
@article{ALCO_2020__3_4_839_0, author = {Banerjee, Arindam and Beyarslan, Selvi Kara and H\`a, Huy T\`ai}, title = {Regularity of powers of edge ideals: from local properties to global bounds}, journal = {Algebraic Combinatorics}, pages = {839--854}, publisher = {MathOA foundation}, volume = {3}, number = {4}, year = {2020}, doi = {10.5802/alco.119}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.119/} }
TY - JOUR AU - Banerjee, Arindam AU - Beyarslan, Selvi Kara AU - Hà, Huy Tài TI - Regularity of powers of edge ideals: from local properties to global bounds JO - Algebraic Combinatorics PY - 2020 SP - 839 EP - 854 VL - 3 IS - 4 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.119/ DO - 10.5802/alco.119 LA - en ID - ALCO_2020__3_4_839_0 ER -
%0 Journal Article %A Banerjee, Arindam %A Beyarslan, Selvi Kara %A Hà, Huy Tài %T Regularity of powers of edge ideals: from local properties to global bounds %J Algebraic Combinatorics %D 2020 %P 839-854 %V 3 %N 4 %I MathOA foundation %U http://www.numdam.org/articles/10.5802/alco.119/ %R 10.5802/alco.119 %G en %F ALCO_2020__3_4_839_0
Banerjee, Arindam; Beyarslan, Selvi Kara; Hà, Huy Tài. Regularity of powers of edge ideals: from local properties to global bounds. Algebraic Combinatorics, Tome 3 (2020) no. 4, pp. 839-854. doi : 10.5802/alco.119. http://www.numdam.org/articles/10.5802/alco.119/
[1] Powers of edge ideals of regularity three bipartite graphs, J. Commut. Algebra, Volume 9 (2017) no. 4, pp. 441-454 | DOI | MR | Zbl
[2] Regularity of powers of edge ideals of unicyclic graphs, Rocky Mountain J. Math., Volume 49 (2019) no. 3, pp. 699-728 | DOI | MR | Zbl
[3] The eventual shape of Betti tables of powers of ideals, Math. Res. Lett., Volume 20 (2013) no. 6, pp. 1033-1046 | DOI | MR | Zbl
[4] The regularity of powers of edge ideals, J. Algebraic Combin., Volume 41 (2015) no. 2, pp. 303-321 | DOI | MR | Zbl
[5] Regularity of edge ideals and their powers, Advances in algebra (Springer Proc. Math. Stat.), Volume 277, Springer, Cham (2019), pp. 17-52 | DOI | MR | Zbl
[6] Regularity of powers of forests and cycles, J. Algebraic Combin., Volume 42 (2015) no. 4, pp. 1077-1095 | DOI | MR | Zbl
[7] Cohen–Macaulay rings, Cambridge university press, 1998 no. 39 | Zbl
[8] The graphs with maximum induced matching and maximum matching the same size, Discrete Math., Volume 299 (2005) no. 1-3, pp. 49-55 | DOI | MR | Zbl
[9] Depth and regularity modulo a principal ideal, J. Algebraic Combin., Volume 49 (2019) no. 1, pp. 1-20 | DOI | MR | Zbl
[10] Asymptotic behaviour of the Castelnuovo–Mumford regularity, Compositio Math., Volume 118 (1999) no. 3, pp. 243-261 | DOI | MR | Zbl
[11] Bounds on the regularity and projective dimension of ideals associated to graphs, J. Algebraic Combin., Volume 38 (2013) no. 1, pp. 37-55 | DOI | MR | Zbl
[12] Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995, xvi+785 pages | MR | Zbl
[13] Powers of edge ideals with linear resolutions, Comm. Algebra, Volume 46 (2018) no. 9, pp. 4007-4020 | DOI | MR | Zbl
[14] Powers of ideals associated to -free graphs, J. Pure Appl. Algebra, Volume 223 (2019) no. 7, pp. 3071-3080 | DOI | MR | Zbl
[15] On Stanley-Reisner rings, Topics in algebra, Part 2 (Warsaw, 1988) (Banach Center Publ.), Volume 26, PWN, Warsaw, 1990, pp. 57-70 | MR | Zbl
[16] Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebraic Combin., Volume 27 (2008) no. 2, pp. 215-245 | DOI | MR | Zbl
[17] Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London, 1969, ix+274 pages | Zbl
[18] A generalization of the Taylor complex construction, Comm. Algebra, Volume 35 (2007) no. 5, pp. 1747-1756 | DOI | MR | Zbl
[19] Monomial ideals, Graduate Texts in Mathematics, 260, Springer-Verlag London, Ltd., London, 2011 | MR | Zbl
[20] Monomial ideals whose powers have a linear resolution, Math. Scand., Volume 95 (2004) no. 1, pp. 23-32 | DOI | MR | Zbl
[21] Algebraic study on Cameron–Walker graphs, J. Algebra, Volume 422 (2015), pp. 257-269 | DOI | MR | Zbl
[22] Cohen–Macaulay rings, combinatorics, and simplicial complexes, Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975) (Lecture Notes in Pure and Appl. Math.), Volume 26 (1977), pp. 171-223 | MR | Zbl
[23] Regularity of powers of bipartite graphs, J. Algebraic Combin., Volume 47 (2018) no. 1, pp. 17-38 | DOI | MR | Zbl
[24] Asymptotic behavior of Castelnuovo–Mumford regularity of edge ideals of very well-covered graphs (2017) (To appear in J. Comm. Algebra, https://arxiv.org/abs/1708.06883)
[25] Upper bounds for the regularity of powers of edge ideals of graphs (2018) (https://arxiv.org/abs/1805.01412)
[26] Asymptotic behaviour of Castelnuovo–Mumford regularity, Proc. Amer. Math. Soc., Volume 128 (2000) no. 2, pp. 407-411 | DOI | MR | Zbl
[27] The minimal non-Cohen–Macaulay monomial ideals, J. Pure Appl. Algebra, Volume 51 (1988) no. 3, pp. 261-266 | DOI | MR | Zbl
[28] Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer Science & Business Media, 2004 | DOI | Zbl
[29] Regularity of powers of edge ideal of whiskered cycles, Comm. Algebra, Volume 45 (2017) no. 3, pp. 1246-1259 | DOI | MR | Zbl
[30] Regularity of edge ideals of -free graphs via the topology of the lcm-lattice, J. Combin. Theory Ser. A, Volume 118 (2011) no. 2, pp. 491-501 | DOI | MR | Zbl
[31] -free edge ideals, J. Algebraic Combin., Volume 37 (2013) no. 2, pp. 243-248 | DOI | MR | Zbl
[32] Regularity of Powers of edge ideal of very well-covered graphs (2017) (https://arxiv.org/abs/1707.04874)
[33] Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser, 2007 | Zbl
[34] Combinatorial symbolic powers, J. Algebra, Volume 319 (2008) no. 1, pp. 115-142 | DOI | MR | Zbl
[35] On the asymptotic linearity of Castelnuovo–Mumford regularity, J. Pure Appl. Algebra, Volume 201 (2005) no. 1-3, pp. 42-48 | DOI | MR | Zbl
[36] Monomial algebras, CRC Press, 2018 | DOI
[37] -collapsing and nerves of families of convex sets, Arch. Math. (Basel), Volume 26 (1975), pp. 317-321 | DOI | MR | Zbl
Cité par Sources :