Let
Révisé le :
Accepté le :
Publié le :
Mots-clés : Association scheme, symmetric bilinear form, quadratic form, code, distance distribution
@article{ALCO_2020__3_1_161_0, author = {Schmidt, Kai-Uwe}, title = {Quadratic and symmetric bilinear forms over finite fields and their association schemes}, journal = {Algebraic Combinatorics}, pages = {161--189}, publisher = {MathOA foundation}, volume = {3}, number = {1}, year = {2020}, doi = {10.5802/alco.88}, language = {en}, url = {https://www.numdam.org/articles/10.5802/alco.88/} }
TY - JOUR AU - Schmidt, Kai-Uwe TI - Quadratic and symmetric bilinear forms over finite fields and their association schemes JO - Algebraic Combinatorics PY - 2020 SP - 161 EP - 189 VL - 3 IS - 1 PB - MathOA foundation UR - https://www.numdam.org/articles/10.5802/alco.88/ DO - 10.5802/alco.88 LA - en ID - ALCO_2020__3_1_161_0 ER -
%0 Journal Article %A Schmidt, Kai-Uwe %T Quadratic and symmetric bilinear forms over finite fields and their association schemes %J Algebraic Combinatorics %D 2020 %P 161-189 %V 3 %N 1 %I MathOA foundation %U https://www.numdam.org/articles/10.5802/alco.88/ %R 10.5802/alco.88 %G en %F ALCO_2020__3_1_161_0
Schmidt, Kai-Uwe. Quadratic and symmetric bilinear forms over finite fields and their association schemes. Algebraic Combinatorics, Tome 3 (2020) no. 1, pp. 161-189. doi : 10.5802/alco.88. https://www.numdam.org/articles/10.5802/alco.88/
[1] Symmetric and alternate matrices in an arbitrary field. I, Trans. Am. Math. Soc., Volume 43 (1938) no. 3, pp. 386-436 | MR | Zbl
[2] An analogue of Vosper’s theorem for extension fields, Math. Proc. Camb. Philos. Soc., Volume 163 (2017) no. 3, pp. 423-452 | DOI | MR | Zbl
[3] Algebraic combinatorics I: Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984 | Zbl
[4] The weight enumerators for certain subcodes of the second order binary Reed–Muller codes, Inf. Control, Volume 17 (1970), pp. 485-500 | DOI | MR | Zbl
[5] An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. (1973) no. 10, p. vi+97 | MR | Zbl
[6] Properties and applications of the recurrence
[7] Alternating Bilinear Forms over GF
[8] Association Schemes and Coding Theory, IEEE Trans. Inf. Theory, Volume 44 (1998) no. 6, pp. 2477-2504 | DOI | MR | Zbl
[9] Linear groups: With an exposition of the Galois field theory, Dover Publications, Inc., New York, 1958 | Zbl
[10] Association schemes of quadratic forms, J. Comb. Theory, Ser. A, Volume 38 (1985) no. 1, pp. 1-14 | DOI | MR | Zbl
[11] Eigenvalues of association schemes of quadratic forms, Discrete Math., Volume 308 (2008) no. 14, pp. 3023-3047 | DOI | MR | Zbl
[12] Bounds on the minimum distance of linear codes and quantum codes, Online available at http://www.codetables.de, 2007 | Zbl
[13] The eigenmatrix of the linear association scheme on
[14] The weight enumerators for several classes of subcodes of the
[15] The minimum distance of some narrow-sense primitive BCH codes, SIAM J. Discrete Math., Volume 31 (2017) no. 4, pp. 2530-2569 | MR | Zbl
[16] A course in combinatorics, Cambridge University Press, Cambridge, 2001 | Zbl
[17] Orthogonal matrices over finite fields, Am. Math. Mon., Volume 76 (1969), pp. 152-164 | DOI | MR
[18] The Theory of Error-Correcting Codes, Amsterdam, The Netherlands: North Holland, 1977 | Zbl
[19] Quadratic forms over finite fields and second-order Reed-Muller codes, JPL Space Programs Summary 37-58, Volume III (1969), pp. 28-33
[20] Symmetric bilinear forms over finite fields of even characteristic, J. Comb. Theory, Ser. A, Volume 117 (2010) no. 8, pp. 1011-1026 | DOI | MR | Zbl
[21] Symmetric bilinear forms over finite fields with applications to coding theory, J. Algebr. Comb., Volume 42 (2015) no. 2, pp. 635-670 | DOI | MR | Zbl
[22] Rank metric codes, Masters thesis, University of Bayreuth (Germany) (2016)
[23] Some
[24] A partially ordered set and
[25] Association schemes of quadratic forms and symmetric bilinear forms, J. Algebr. Comb., Volume 17 (2003) no. 2, pp. 149-161 | DOI | MR | Zbl
Cité par Sources :