We associate a graded monoidal supercategory
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.73
Mots-clés : Categorification, graded Frobenius superalgebra, Heisenberg algebra, diagrammatic calculus
@article{ALCO_2019__2_5_937_0, author = {Savage, Alistair}, title = {Frobenius {Heisenberg} categorification}, journal = {Algebraic Combinatorics}, pages = {937--967}, publisher = {MathOA foundation}, volume = {2}, number = {5}, year = {2019}, doi = {10.5802/alco.73}, zbl = {07115047}, mrnumber = {4023572}, language = {en}, url = {https://www.numdam.org/articles/10.5802/alco.73/} }
Savage, Alistair. Frobenius Heisenberg categorification. Algebraic Combinatorics, Tome 2 (2019) no. 5, pp. 937-967. doi : 10.5802/alco.73. https://www.numdam.org/articles/10.5802/alco.73/
[1] Representations of the oriented skein category (2017) (https://arxiv.org/abs/1712.08953)
[2] On the definition of Heisenberg category, Algebr. Comb., Volume 1 (2018) no. 4, pp. 523-544 (https://arxiv.org/abs/1709.06589, https://doi.org/10.5802/alco.26) | DOI | MR | Zbl
[3] A basis theorem for the degenerate affine oriented Brauer–Clifford supercategory (To appear in Canad. J. Math. https://arxiv.org/abs/1706.09999, https://doi.org/10.4153/CJM-2018-030-8 ) | DOI
[4] A basis theorem for the affine oriented Brauer category and its cyclotomic quotients, Quantum Topol., Volume 8 (2017) no. 1, pp. 75-112 (https://arxiv.org/abs/1404.6574, https://doi.org/10.4171/QT/87) | DOI | MR | Zbl
[5] Monoidal supercategories, Comm. Math. Phys., Volume 351 (2017) no. 3, pp. 1045-1089 (https://arxiv.org/abs/1603.05928, https://doi.org/10.1007/s00220-017-2850-9) | DOI | MR | Zbl
[6] Quantum Frobenius Heisenberg categorification (In preparation)
[7] The degenerate Heisenberg category and its Grothendieck ring (2018) (https://arxiv.org/abs/1812.03255)
[8] On the definition of quantum Heisenberg category (2018) (https://arxiv.org/abs/1812.04779)
[9] Heisenberg categorification and Hilbert schemes, Duke Math. J., Volume 161 (2012) no. 13, pp. 2469-2547 (https://arxiv.org/abs/1009.5147, https://doi.org/10.1215/00127094-1812726) | DOI | MR | Zbl
[10] Higher level twisted Heisenberg supercategories (In preparation)
[11] A categorification of twisted Heisenberg algebras, Adv. Math., Volume 295 (2016), pp. 368-420 (https://arxiv.org/abs/1501.00283, https://doi.org/10.1016/j.aim.2016.03.033) | DOI | MR | Zbl
[12] Heisenberg algebra and a graphical calculus, Fund. Math., Volume 225 (2014) no. 1, pp. 169-210 (https://arxiv.org/abs/1009.3295, https://doi.org/10.4064/fm225-1-8) | DOI | MR | Zbl
[13] A graphical calculus for the Jack inner product on symmetric functions, J. Combin. Theory Ser. A, Volume 155 (2018), pp. 503-543 (https://arxiv.org/abs/1610.01862, https://doi.org/10.1016/j.jcta.2017.11.020) | DOI | MR | Zbl
[14] Hecke algebras, finite general linear groups, and Heisenberg categorification, Quantum Topol., Volume 4 (2013) no. 2, pp. 125-185 (https://arxiv.org/abs/1101.0420, https://doi.org/10.4171/QT/37) | DOI | MR | Zbl
[15] Degenerate cyclotomic Hecke algebras and higher level Heisenberg categorification, J. Algebra, Volume 505 (2018), pp. 150-193 (https://arxiv.org/abs/1705.03066, https://doi.org/10.1016/j.jalgebra.2018.03.004) | DOI | MR | Zbl
[16] A general approach to Heisenberg categorification via wreath product algebras, Math. Z., Volume 286 (2017) no. 1-2, pp. 603-655 (https://arxiv.org/abs/1507.06298, https://doi.org/10.1007/s00209-016-1776-9) | DOI | MR | Zbl
[17] Quantum affine wreath algebras (2019) (https://arxiv.org/abs/1902.00143)
[18] Affine wreath product algebras (To appear in Int. Math. Res. Not. IMRN https://arxiv.org/abs/1709.02998, https://doi.org/10.1093/imrn/rny092) | DOI
Cité par Sources :