We define a
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.21
Mots-clés : dual graded graphs, insertion algorithms,
@article{ALCO_2018__1_4_441_0, author = {Patrias, Rebecca and Pylyavskyy, Pavlo}, title = {Dual filtered graphs}, journal = {Algebraic Combinatorics}, pages = {441--500}, publisher = {MathOA foundation}, volume = {1}, number = {4}, year = {2018}, doi = {10.5802/alco.21}, mrnumber = {3875073}, zbl = {1397.05202}, language = {en}, url = {https://www.numdam.org/articles/10.5802/alco.21/} }
Patrias, Rebecca; Pylyavskyy, Pavlo. Dual filtered graphs. Algebraic Combinatorics, Tome 1 (2018) no. 4, pp. 441-500. doi : 10.5802/alco.21. https://www.numdam.org/articles/10.5802/alco.21/
[1] Combinatorial Hopf algebras and towers of algebras–dimension, quantization and functorality, Algebr. Represent. Theory, Volume 15 (2012) no. 4, pp. 675-696 | DOI | MR | Zbl
[2] Rings of differential operators, North-Holland mathematical Library, 21, North-Holland, 1979, xvii+374 pages | MR
[3] The Möbius function of subword order, Invariant theory and tableaux (Minneapolis, USA, 1988) (The IMA Volumes in Mathematics and its Applications), Volume 19, Springer, 1990, pp. 118-124 | Zbl
[4] An analogue of Young’s lattice for compositions (2005) (https://arxiv.org/abs/math/0508043)
[5] A Littlewood–Richardson rule for the K-theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl
[6] Stable Grothendieck polynomials and K-theoretic factor sequences, Math. Ann., Volume 340 (2008) no. 2, pp. 359-382 | DOI | MR | Zbl
[7] K-theory of minuscule varieties, J. Reine Angew. Math., Volume 719 (2016), pp. 133-171 | MR | Zbl
[8] K-theoretic Schubert calculus for OG
[9] Generalized Robinson–Schensted–Knuth correspondence, J. Sov. Math., Volume 41 (1988) no. 2, pp. 979-991 | DOI | MR | Zbl
[10] Duality of graded graphs, J. Algebr. Comb., Volume 3 (1994) no. 4, pp. 357-404 | DOI | MR | Zbl
[11] Schensted algorithms for dual graded graphs, J. Algebr. Comb., Volume 4 (1995) no. 1, pp. 5-45 | DOI | MR | Zbl
[12] Shifted Hecke insertion and the K-theory of OG
[13] Permutations, matrices, and generalized Young tableaux, Pac. J. Math., Volume 34 (1970) no. 3, pp. 709-727 | DOI | MR | Zbl
[14] Quantized dual graded graphs, Electron. J. Comb., Volume 17 (2010) no. 1, R88, 11 pages | MR | Zbl
[15] Combinatorial Hopf algebras and
[16]
(unpublished)[17] Dual graded graphs for Kac–Moody algebras, Algebra Number Theory, Volume 1 (2007) no. 4, pp. 451-488 | DOI | MR | Zbl
[18] Symmetric functions and Hall polynomials, Oxford Science Publications, Clarendon Press, 1998, x+475 pages | Zbl
[19] Dual graded graphs and Fomin’s
[20] Theory of non-commutative polynomials, Ann. Math., Volume 34 (1933), pp. 480-508 | DOI | MR | Zbl
[21] Combinatorics of K-theory via a K-theoretic Poirier–Reutenauer bialgebra, Discrete Mathematics, Volume 339 (2016) no. 3, pp. 1095-1115 | DOI | MR | Zbl
[22] Algèbres de Hopf de tableaux, Ann. Sci. Math. Qué., Volume 19 (1995) no. 1, pp. 79-90 | Zbl
[23] On the representations of the symmetric group, Am. J. Math., Volume 60 (1938), pp. 745-760 | DOI | Zbl
[24] Shifted tableaux, Schur
[25] Longest increasing and decreasing subsequences, Classic Papers in Combinatorics (Modern Birkhäuser Classics), Birkhäuser, 2009, pp. 299-311 | DOI | Zbl
[26] Differential posets, J. Am. Math. Soc., Volume 1 (1988) no. 4, pp. 919-961 | DOI | MR | Zbl
[27] Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999, xii+581 pages | MR | Zbl
[28] Enumerative Combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, 2012, xiii+626 pages | Zbl
[29] A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus, Algebra Number Theory, Volume 3 (2009) no. 2, pp. 121-148 | DOI | MR | Zbl
[30] The direct sum map on Grassmannians and jeu de taquin for increasing tableaux, Int. Math. Res. Not., Volume 2011 (2011) no. 12, pp. 2766-2793 | MR | Zbl
[31] Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm, Adv. Appl. Math., Volume 46 (2011) no. 1-4, pp. 610-642 | DOI | MR | Zbl
[32] A theory of shifted Young tableaux, Ph. D. Thesis, Massachusetts Institute of Technology (USA) (1984) | MR
[33] Qualitative substitutional analysis (third paper), Proc. Lond. Math. Soc., Volume 28 (1927), pp. 255-292 | MR | Zbl
Cité par Sources :