On the existence of tableaux with given modular major index
Algebraic Combinatorics, Tome 1 (2018) no. 1, pp. 3-21.

We provide simple necessary and sufficient conditions for the existence of a standard Young tableau of a given shape and major index r mod n, for all r. Our result generalizes the r=1 case due essentially to Klyachko [11] and proves a recent conjecture due to Sundaram [32] for the r=0 case. A byproduct of the proof is an asymptotic equidistribution result for “almost all” shapes. The proof uses a representation-theoretic formula involving Ramanujan sums and normalized symmetric group character estimates. Further estimates involving “opposite” hook lengths are given which are well-adapted to classifying which partitions λn have fλnd for fixed d. We also give a new proof of a generalization of the hook length formula due to Fomin-Lulov [4] for symmetric group characters at rectangles. We conclude with some remarks on unimodality of symmetric group characters.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/alco.4
Classification : 05E10
Mots-clés : Standard Young tableaux, symmetric group characters, major index, hook length formula, rectangular partitions
Swanson, Joshua P. 1

1 University of Washington Dept. Mathematics Seattle, WA 98195-4350 (USA)
@article{ALCO_2018__1_1_3_0,
     author = {Swanson, Joshua P.},
     title = {On the existence of tableaux with given modular major index},
     journal = {Algebraic Combinatorics},
     pages = {3--21},
     publisher = {MathOA foundation},
     volume = {1},
     number = {1},
     year = {2018},
     doi = {10.5802/alco.4},
     zbl = {06882332},
     mrnumber = {3857157},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/alco.4/}
}
TY  - JOUR
AU  - Swanson, Joshua P.
TI  - On the existence of tableaux with given modular major index
JO  - Algebraic Combinatorics
PY  - 2018
SP  - 3
EP  - 21
VL  - 1
IS  - 1
PB  - MathOA foundation
UR  - http://www.numdam.org/articles/10.5802/alco.4/
DO  - 10.5802/alco.4
LA  - en
ID  - ALCO_2018__1_1_3_0
ER  - 
%0 Journal Article
%A Swanson, Joshua P.
%T On the existence of tableaux with given modular major index
%J Algebraic Combinatorics
%D 2018
%P 3-21
%V 1
%N 1
%I MathOA foundation
%U http://www.numdam.org/articles/10.5802/alco.4/
%R 10.5802/alco.4
%G en
%F ALCO_2018__1_1_3_0
Swanson, Joshua P. On the existence of tableaux with given modular major index. Algebraic Combinatorics, Tome 1 (2018) no. 1, pp. 3-21. doi : 10.5802/alco.4. http://www.numdam.org/articles/10.5802/alco.4/

[1] Adin, Ron M.; Brenti, Francesco; Roichman, Yuval Descent representations and multivariate statistics, Trans. Amer. Math. Soc., Volume 357 (2005) no. 8, pp. 3051-3082 | DOI | MR | Zbl

[2] Ciocan-Fontanine, Ionuţ; Konvalinka, Matjaž; Pak, Igor The weighted hook length formula, J. Combin. Theory Ser. A, Volume 118 (2011) no. 6, pp. 1703-1717 | DOI | MR | Zbl

[3] Désarmémien, Jacques Étude modulo n des statistiques mahoniennes, Séminaire Lotharingien de Combinatoire, Volume 22 (1990), pp. 27-35 | Zbl

[4] Fomin, Sergey; Lulov, Nathan On the number of rim hook tableaux, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 223 (1995), pp. 219-226 http://mi.mathnet.ru/znsl4388 | DOI | MR | Zbl

[5] Foulkes, H. O. Characters of symmetric groups induced by characters of cyclic subgroups, Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), Inst. Math. Appl., Southend-on-Sea, 1972, pp. 141-154 | MR

[6] Fulton, W. Young Tableaux; with applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, New York, 1997 | MR | Zbl

[7] Garsia, A. M.; Procesi, C. On certain graded Sn-modules and the q-Kostka polynomials, Adv. Math., Volume 94 (1992) no. 1, pp. 82-138 | DOI | MR | Zbl

[8] James, Gordon; Kerber, Adalbert The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, Mass., 1981, xxviii+510 pages | MR | Zbl

[9] Johnson, Marianne Standard tableaux and Klyachko’s theorem on Lie representations, J. Combin. Theory Ser. A, Volume 114 (2007) no. 1, pp. 151-158 | DOI | MR | Zbl

[10] Kerov, S. A q-analog of the hook walk algorithm for random Young tableaux, J. Algebraic Combin., Volume 2 (1993) no. 4, pp. 383-396 | DOI | MR | Zbl

[11] Klyachko, A. A. Lie elements in the tensor algebra, Siberian Mathematical Journal, Volume 15 (1974) no. 6, pp. 914-920 | DOI | MR | Zbl

[12] Knopfmacher, John Abstract analytic number theory, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975 no. 12, ix+322 pages | MR | Zbl

[13] Kovács, L. G.; Stöhr, Ralph A combinatorial proof of Klyachko’s theorem on Lie representations, J. Algebraic Combin., Volume 23 (2006) no. 3, pp. 225-230 | DOI | MR | Zbl

[14] Kraśkiewicz, Witold; Weyman, Jerzy Algebra of coinvariants and the action of a Coxeter element, Bayreuth. Math. Schr. (2001) no. 63, pp. 265-284 | MR | Zbl

[15] Lam, T. Y. Young diagrams, Schur functions, the Gale–Ryser theorem and a conjecture of Snapper, J. Pure Appl. Algebra, Volume 10 (1977/78) no. 1, pp. 81-94 | DOI | MR | Zbl

[16] Larsen, Michael; Shalev, Aner Characters of symmetric groups: sharp bounds and applications, Invent. Math., Volume 174 (2008) no. 3, pp. 645-687 | DOI | MR | Zbl

[17] Liebler, R. A.; Vitale, M. R. Ordering the partition characters of the symmetric group, J. Algebra, Volume 25 (1973), pp. 487-489 | DOI | MR | Zbl

[18] Morales, Alejandro; Pak, Igor; Panova, Greta Asymptotics of the number of standard Young tableaux of skew shape (2017) (Preprint) | Zbl

[19] Pak, Igor Inequality for hook numbers in Young diagrams, MathOverflow https://mathoverflow.net/q/243846 (version: 2017-04-13)

[20] Reutenauer, Christophe Free Lie algebras, London Mathematical Society Monographs. New Series, 7, The Clarendon Press, Oxford University Press, New York, 1993, xviii+269 pages (Oxford Science Publications) | MR | Zbl

[21] Roichman, Yuval Upper bound on the characters of the symmetric groups, Invent. Math., Volume 125 (1996) no. 3, pp. 451-485 | DOI | MR | Zbl

[22] Sagan, Bruce E. The symmetric group. Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001, xvi+238 pages | DOI | MR | Zbl

[23] Schocker, Manfred Embeddings of higher Lie modules, J. Pure Appl. Algebra, Volume 185 (2003) no. 1-3, pp. 279-288 | DOI | MR | Zbl

[24] Serre, Jean-Pierre Linear representations of finite groups, Graduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1977 no. 42, x+170 pages (Translated from the second French edition by Leonard L. Scott) | MR | Zbl

[25] Snapper, Ernst Group characters and nonnegative integral matrices, J. Algebra, Volume 19 (1971), pp. 520-535 | DOI | MR | Zbl

[26] Spencer, Joel Asymptopia, Student Mathematical Library, 71, American Mathematical Society, Providence, RI, 2014, xiv+183 pages (With Laura Florescu) | DOI | MR | Zbl

[27] Springer, T. A. Regular elements of finite reflection groups, Invent. Math., Volume 25 (1974), pp. 159-198 | DOI | MR | Zbl

[28] Stanley, R. P. Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages (With a foreword by Gian Carlo Rota and appendix 1 by Sergey Fomin) | DOI | MR | Zbl

[29] Stanley, Richard P. Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.), Volume 1 (1979) no. 3, pp. 475-511 | DOI | MR | Zbl

[30] Stanley, Richard P. The stable behavior of some characters of SL(n,C), Linear and Multilinear Algebra, Volume 16 (1984) no. 1-4, pp. 3-27 | DOI | MR | Zbl

[31] Stembridge, John R. On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math., Volume 140 (1989) no. 2, pp. 353-396 | DOI | MR | Zbl

[32] Sundaram, Sheila On conjugacy classes of Sn containing all irreducibles (2017) (to appear in Israel J. Math.) | Zbl

Cité par Sources :