We explicitly determine the spectrum of transfer operators (acting on spaces of holomorphic functions) associated to analytic expanding circle maps arising from finite Blaschke products. This is achieved by deriving a convenient natural representation of the respective adjoint operators.
@article{AIHPC_2017__34_1_31_0, author = {Bandtlow, Oscar F. and Just, Wolfram and Slipantschuk, Julia}, title = {Spectral structure of transfer operators for expanding circle maps}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {31--43}, publisher = {Elsevier}, volume = {34}, number = {1}, year = {2017}, doi = {10.1016/j.anihpc.2015.08.004}, mrnumber = {3592677}, zbl = {1377.37035}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.08.004/} }
TY - JOUR AU - Bandtlow, Oscar F. AU - Just, Wolfram AU - Slipantschuk, Julia TI - Spectral structure of transfer operators for expanding circle maps JO - Annales de l'I.H.P. Analyse non linéaire PY - 2017 SP - 31 EP - 43 VL - 34 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2015.08.004/ DO - 10.1016/j.anihpc.2015.08.004 LA - en ID - AIHPC_2017__34_1_31_0 ER -
%0 Journal Article %A Bandtlow, Oscar F. %A Just, Wolfram %A Slipantschuk, Julia %T Spectral structure of transfer operators for expanding circle maps %J Annales de l'I.H.P. Analyse non linéaire %D 2017 %P 31-43 %V 34 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2015.08.004/ %R 10.1016/j.anihpc.2015.08.004 %G en %F AIHPC_2017__34_1_31_0
Bandtlow, Oscar F.; Just, Wolfram; Slipantschuk, Julia. Spectral structure of transfer operators for expanding circle maps. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 1, pp. 31-43. doi : 10.1016/j.anihpc.2015.08.004. http://www.numdam.org/articles/10.1016/j.anihpc.2015.08.004/
[1] Smooth Ergodic Theory and Its Applications (1999), pp. 297–325 (Seattle) | MR | Zbl
[2] Positive Transfer Operators and Decay of Correlations, World Scientific Publishing, Singapore, 2000 | DOI | MR | Zbl
[3] Dynamical determinants via dynamical conjugacies for postcritically finite polynomials, J. Stat. Phys., Volume 108 (2002) no. 5–6, pp. 973–993 | MR | Zbl
[4] Resolvent estimates for operators belonging to exponential classes, Integral Equ. Oper. Theory, Volume 61 (2008), pp. 21–43 | DOI | MR | Zbl
[5] Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions, Adv. Math., Volume 218 (2008), pp. 902–925 | DOI | MR | Zbl
[6] On the Ruelle eigenvalue sequence, Ergod. Theory Dyn. Syst., Volume 28 (2008) no. 06, pp. 1701–1711 | DOI | MR | Zbl
[7] Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension, Probab. Appl., Birkhäuser, 1997 | MR | Zbl
[8] An Introduction to Classical Complex Analysis, vol. 1, Academic Press, Inc., New York–London, 1979 | DOI | MR | Zbl
[9] Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995 | MR | Zbl
[10] Theory of -Spaces, Academic Press, New York, 1970 | MR | Zbl
[11] Zeta functions of Ruelle and Selberg I, Ann. Sci. Éc. Norm. Super., Volume 19 (1986), pp. 491–517 | Numdam | MR | Zbl
[12] Eigenfunctions for smooth expanding circle maps, Nonlinearity, Volume 17 (2004) no. 5, pp. 1723–1730 | DOI | MR | Zbl
[13] On Mayer's conjecture and zeros of entire functions, Ergod. Theory Dyn. Syst., Volume 14 (1994) no. 03, pp. 565–574 | DOI | MR | Zbl
[14] A Ruelle operator for a real Julia set, Commun. Math. Phys., Volume 141 (1991) no. 1, pp. 119–132 | DOI | MR | Zbl
[15] Ruelle operators with rational weights for Julia sets, J. Anal. Math., Volume 63 (1994) no. 1, pp. 303–331 | DOI | MR | Zbl
[16] On finite Blaschke products whose restrictions to the unit circle are exact endomorphisms, Bull. Lond. Math. Soc., Volume 15 (1983) no. 4, pp. 343–348 | MR | Zbl
[17] Continued fractions and related transformations, Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford University Press, 1991, pp. 175–222 | MR
[18] Expanding maps of the circle rerevisited: positive Lyapunov exponents in a rich family, Ergod. Theory Dyn. Syst., Volume 26 (2006) no. 06, pp. 1931–1937 | DOI | MR | Zbl
[19] Invariant subspaces of for multiply connected regions, Pac. J. Math., Volume 134 (1988) no. 1 | MR | Zbl
[20] Real and Complex Analysis, McGraw-Hill Book Co., 1987 | MR | Zbl
[21] Zeta-functions for expanding maps and Anosov flows, Invent. Math., Volume 34 (1976) no. 3, pp. 231–242 | DOI | MR | Zbl
[22] The correlation spectrum for hyperbolic analytic maps, Nonlinearity, Volume 5 (1992) no. 6, pp. 1237–1263 | MR | Zbl
[23] Coupled maps and analytic function spaces, Ann. Sci. Éc. Norm. Super., Volume 35 (2002) no. 4, pp. 489–535 | Numdam | MR | Zbl
[24] The Spaces of an Annulus, Mem. Am. Math. Soc., vol. 56, 1965 | MR | Zbl
[25] Composition Operators and Classical Function Theory, Springer, 1993 | DOI | MR | Zbl
[26] Analytic expanding circle maps with explicit spectra, Nonlinearity, Volume 26 (2013) | DOI | MR | Zbl
[27] On correlation decay in low-dimensional systems, Europhys. Lett., Volume 104 (2013) | DOI
[28] Blaschke products and expanding maps of the circle, Proc. Am. Math. Soc., Volume 128 (1999) no. 2, pp. 621–622 | DOI | MR | Zbl
[29] Fredholm determinant of complex Ruelle operator, Ruelle's dynamical zeta-function, and forward/backward Collet–Eckmann condition, Sūrikaisekikenkyūsho Kōkyūroku, Volume 1153 (2000), pp. 85–102 | MR | Zbl
[30] An Introduction to Ergodic Theory, Springer, 2000 | Zbl
Cité par Sources :