We consider the scalar semilinear heat equation , where is continuous and non-decreasing but need not be convex. We completely characterise those functions f for which the equation has a local solution bounded in for all non-negative initial data , when is a bounded domain with Dirichlet boundary conditions. For this holds if and only if ; and for if and only if , where . This shows for the first time that the model nonlinearity is truly the ‘boundary case’ when , but that this is not true for .
The same characterisations hold for the equation posed on the whole space provided that .
@article{AIHPC_2016__33_6_1519_0, author = {Laister, R. and Robinson, J.C. and Sier\.z\k{e}ga, M. and Vidal-L\'opez, A.}, title = {A complete characterisation of local existence for semilinear heat equations in {Lebesgue} spaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1519--1538}, publisher = {Elsevier}, volume = {33}, number = {6}, year = {2016}, doi = {10.1016/j.anihpc.2015.06.005}, zbl = {1349.35169}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.06.005/} }
TY - JOUR AU - Laister, R. AU - Robinson, J.C. AU - Sierżęga, M. AU - Vidal-López, A. TI - A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 1519 EP - 1538 VL - 33 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2015.06.005/ DO - 10.1016/j.anihpc.2015.06.005 LA - en ID - AIHPC_2016__33_6_1519_0 ER -
%0 Journal Article %A Laister, R. %A Robinson, J.C. %A Sierżęga, M. %A Vidal-López, A. %T A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 1519-1538 %V 33 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2015.06.005/ %R 10.1016/j.anihpc.2015.06.005 %G en %F AIHPC_2016__33_6_1519_0
Laister, R.; Robinson, J.C.; Sierżęga, M.; Vidal-López, A. A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 6, pp. 1519-1538. doi : 10.1016/j.anihpc.2015.06.005. http://www.numdam.org/articles/10.1016/j.anihpc.2015.06.005/
[1] Complete blow-up after for the solution of a semilinear heat equation, J. Funct. Anal., Volume 71 (1987), pp. 142–174 | DOI | Zbl
[2] Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985), pp. 185–212 | DOI | Numdam | Zbl
[3] A nonlinear heat equation with singular initial data, J. Anal. Math., Volume 68 (1996), pp. 277–304 | DOI | Zbl
[4] Blow up for revisited, Adv. Differ. Equ., Volume 1 (1996), pp. 73–90 | Zbl
[5] Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl., Volume 62 (1983), pp. 73–97 | Zbl
[6] No local solution for a nonlinear heat equation, Commun. Partial Differ. Equ., Volume 28 (2003), pp. 1807–1831 | DOI | Zbl
[7] Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., Volume 34 (1985), pp. 425–447 | DOI | Zbl
[8] On the blowing up of solutions of the Cauchy problem for , J. Fac. Sci. Univ. Tokyo Sect. I, Volume 13 (1966), pp. 109–124 | Zbl
[9] The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Dyn. Syst., Volume 8 (2002), pp. 399–433 | DOI | Zbl
[10] Solutions for semilinear parabolic equations in and regularity of weak solutions of the Navier–Stokes system, J. Differ. Equ., Volume 62 (1986), pp. 186–212 | DOI | Zbl
[11] Non-uniqueness for a semilinear initial value problem, Indiana Univ. Math. J., Volume 31 (1982), pp. 167–189 | DOI | Zbl
[12] On the growth of solutions of quasi-linear parabolic equations, Commun. Pure Appl. Math., Volume 16 (1963), pp. 305–330 | DOI | Zbl
[13] Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23, American Mathematical Society, Providence, RI, 1968 | DOI | Zbl
[14] Non-existence of local solutions for semilinear heat equations of Osgood type, J. Differ. Equ., Volume 255 (2013), pp. 3020–3028 | DOI | Zbl
[15] Non-existence of local solutions of semilinear heat equations of Osgood type in bounded domains, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 621–626 | DOI | Zbl
[16] Nonuniqueness for a critical nonlinear heat equation with any initial data, Nonlinear Anal., Volume 55 (2003), pp. 927–936 | DOI | Zbl
[17] Singular behavior in nonlinear parabolic equations, Trans. Am. Math. Soc., Volume 287 (1985), pp. 657–671 | Zbl
[18] Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Basel, 2007 | Zbl
[19] Supersolutions for a class of semilinear heat equations, Rev. Mat. Complut., Volume 26 (2013), pp. 341–360 | DOI | Zbl
[20] Topics in the theory of semilinear heat equations, University of Warwick, 2012 (PhD thesis)
[21] Heat equation and the principle of not feeling the boundary, Proc. R. Soc. Edinb. A, Volume 112 (1989), pp. 257–262 | DOI | Zbl
[22] Gaussian bounds for the Dirichlet heat kernel, J. Funct. Anal., Volume 88 (1990), pp. 267–278 | DOI | Zbl
[23] Semilinear evolution equations in Banach spaces, J. Funct. Anal., Volume 32 (1979), pp. 277–296 | DOI | Zbl
[24] Local existence and nonexistence for semilinear parabolic equations in , Indiana Univ. Math. J., Volume 29 (1980), pp. 79–102 | DOI | Zbl
[25] Existence and nonexistence of global solutions for a semilinear heat equation, Isr. J. Math., Volume 38 (1981), pp. 29–40 | DOI | MR | Zbl
Cité par Sources :