Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 3, pp. 809-828.

This paper is concerned with the properties of L2-normalized minimizers of the Gross–Pitaevskii (GP) functional for a two-dimensional Bose–Einstein condensate with attractive interaction and ring-shaped potential. By establishing some delicate estimates on the least energy of the GP functional, we prove that symmetry breaking occurs for the minimizers of the GP functional as the interaction strength a>0 approaches a critical value a, each minimizer of the GP functional concentrates to a point on the circular bottom of the potential well and then is non-radially symmetric as aa. However, when a>0 is suitably small we prove that the minimizers of the GP functional are unique, and this unique minimizer is radially symmetric.

DOI : 10.1016/j.anihpc.2015.01.005
Classification : 35J60, 35Q40, 46N50
Mots-clés : Nonlinear elliptic equation, Constrained minimization, Gross–Pitaevskii functional, Bose–Einstein condensates, Attractive interactions, Ring-shaped potential
@article{AIHPC_2016__33_3_809_0,
     author = {Guo, Yujin and Zeng, Xiaoyu and Zhou, Huan-Song},
     title = {Energy estimates and symmetry breaking in attractive {Bose{\textendash}Einstein} condensates with ring-shaped potentials},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {809--828},
     publisher = {Elsevier},
     volume = {33},
     number = {3},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.01.005},
     zbl = {1341.35053},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2015.01.005/}
}
TY  - JOUR
AU  - Guo, Yujin
AU  - Zeng, Xiaoyu
AU  - Zhou, Huan-Song
TI  - Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 809
EP  - 828
VL  - 33
IS  - 3
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2015.01.005/
DO  - 10.1016/j.anihpc.2015.01.005
LA  - en
ID  - AIHPC_2016__33_3_809_0
ER  - 
%0 Journal Article
%A Guo, Yujin
%A Zeng, Xiaoyu
%A Zhou, Huan-Song
%T Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 809-828
%V 33
%N 3
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2015.01.005/
%R 10.1016/j.anihpc.2015.01.005
%G en
%F AIHPC_2016__33_3_809_0
Guo, Yujin; Zeng, Xiaoyu; Zhou, Huan-Song. Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 3, pp. 809-828. doi : 10.1016/j.anihpc.2015.01.005. https://www.numdam.org/articles/10.1016/j.anihpc.2015.01.005/

[1] Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A. Observation of Bose–Einstein condensation in a dilute atomic vapor, Science, Volume 269 (1995), pp. 198–201 | DOI

[2] Bao, W.Z.; Cai, Y.Y. Mathematical theory and numerical methods for Bose–Einstein condensation, Kinet. Relat. Models, Volume 6 (2013), pp. 1–135 | Zbl

[3] Cazenave, T. Semilinear Schrödinger Equations, Courant Lecture Notes in Math., vol. 10, Courant Institute of Mathematical Science/AMS, New York, 2003 | DOI | Zbl

[4] Choi, D.I.; Niu, Q. Bose Einstein condensation in an optical lattice, Phys. Rev. Lett., Volume 82 (1999), pp. 2022–2025

[5] Crandall, M.G.; Rabinowitz, P.H. Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Ration. Mech. Anal., Volume 52 (1973), pp. 161–180 | DOI | Zbl

[6] Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999), pp. 463–512 | DOI

[7] Ding, Y.H.; Li, S.J. Homoclinic orbits for first order Hamiltonian systems, J. Math. Anal. Appl., Volume 189 (1995), pp. 585–601 | Zbl

[8] Erdős, L.; Schlein, B.; Yau, H.T. Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate, Ann. Math., Volume 172 (2010), pp. 291–370 | DOI | Zbl

[9] Gidas, B.; Ni, W.M.; Nirenberg, L. Symmetry of positive solutions of nonlinear elliptic equations in Rn , Mathematical Analysis and Applications Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York, 1981, pp. 369–402 | Zbl

[10] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer, 1997

[11] Gross, E.P. Structure of a quantized vortex in boson systems, Nuovo Cimento, Volume 20 (1961), pp. 454–466 | DOI | Zbl

[12] Gross, E.P. Hydrodynamics of a superfluid condensate, J. Math. Phys., Volume 4 (1963), pp. 195–207 | DOI

[13] Guo, Y.J.; Seiringer, R. On the mass concentration for Bose–Einstein condensates with attractive interactions, Lett. Math. Phys., Volume 104 (2014), pp. 141–156 | Zbl

[14] Gupta, S.; Murch, K.W.; Moore, K.L.; Purdy, T.P.; Stamper-Kurn, D.M. Bose–Einstein condensation in a circular waveguide, Phys. Rev. Lett., Volume 95 (2005), pp. 143201 | DOI

[15] Halkyard, P.L. Dynamics in cold atomic gases: resonant behaviour of the quantum delta-kicked accelerator and Bose–Einstein condensates in ring traps, Durham University, 2010 (Ph.D. Thesis)

[16] Halkyard, P.L.; Jones, M.P.A.; Gardiner, S.A. Rotational response of two-component Bose–Einstein condensates in ring traps, Phys. Rev. A, Volume 81 (2010), pp. 061602(R) | DOI

[17] Han, Q.; Lin, F.H. Elliptic Partial Differential Equations, Courant Lect. Notes Math., vol. 1, Courant Institute of Mathematical Science/AMS, New York, 2011 | Zbl

[18] Kavian, O.; Weissler, F.B. Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation, Mich. Math. J., Volume 41 (1994) no. 1, pp. 151–173 | DOI | Zbl

[19] Kwong, M.K. Uniqueness of positive solutions of Δuu+up=0 in RN , Arch. Ration. Mech. Anal., Volume 105 (1989), pp. 243–266 | Zbl

[20] Li, Y.; Ni, W.M. Radial symmetry of positive solutions of nonlinear elliptic equations in Rn , Commun. Partial Differ. Equ., Volume 18 (1993), pp. 1043–1054 | Zbl

[21] Lieb, E.H.; Loss, M. Analysis, Grad. Stud. in Math., vol. 14, Amer. Math. Soc., Providence, RI, 2001 | Zbl

[22] Lieb, E.H.; Seiringer, R. Proof of Bose–Einstein condensation for dilute trapped gases, Phys. Rev. Lett., Volume 88 (2002), pp. 170409-1–170409-4

[23] Lieb, E.H.; Seiringer, R.; Solovej, J.P.; Yngvason, J. The Mathematics of the Bose Gas and Its Condensation, Oberwolfach Seminars, vol. 34, Birkhäuser Verlag, Basel, 2005 | Zbl

[24] Lieb, E.H.; Seiringer, R.; Yngvason, J. Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional, Phys. Rev. A, Volume 61 (2000), pp. 043602-1–043602-13

[25] Lieb, E.H.; Seiringer, R.; Yngvason, J. A rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas, Commun. Math. Phys., Volume 224 (2001), pp. 17–31 | Zbl

[26] Lions, P.L. The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984), pp. 223–283 | Numdam | Zbl

[27] McLeod, K.; Serrin, J. Uniqueness of positive radial solutions of Δu+f(u)=0 in Rn , Arch. Ration. Mech. Anal., Volume 99 (1987), pp. 115–145 | DOI | Zbl

[28] Ni, W.-M.; Takagi, I. On the shape of least-energy solutions to a semilinear Neumann problem, Commun. Pure Appl. Math., Volume 44 (1991), pp. 819–851 | Zbl

[29] Pitaevskii, L.P. Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, Volume 13 (1961), pp. 451–454

[30] Reed, M.; Simon, B. Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York–London, 1978 | MR | Zbl

[31] Ryu, C.; Andersen, M.F.; Cladé, P.; Natarajan, Vasant; Helmerson, K.; Phillips, W.D. Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap, Phys. Rev. Lett., Volume 99 (2007), pp. 260401

[32] Smyrnakis, J.; Bargi, S.; Kavoulakis, G.M.; Magiropoulos, M.; Karkkainen, K.; Reimann, S.M. Mixtures of Bose gases confined in a ring potential, Phys. Rev. Lett., Volume 103 (2009), pp. 100404 | DOI

[33] Stuart, C.A.; Ambrosetti, A.; Chang, K.-C.; Ekeland, I. An introduction to elliptic equations on RN , Nonlinear Functional Analysis and Applications to Differential Equations, World Scientific, Singapore, 1998 | MR | Zbl

[34] Wang, X.F. On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys., Volume 153 (1993), pp. 229–244 | MR | Zbl

[35] Weinstein, M.I. Nonlinear Schrödinger equations and sharp interpolations estimates, Commun. Math. Phys., Volume 87 (1983), pp. 567–576 | DOI | MR | Zbl

  • Cirant, Marco; Kong, Fanze; Wei, Juncheng; Zeng, Xiaoyu Critical mass phenomena and blow-up behaviors of ground states in stationary second order mean-field games systems with decreasing cost, Journal de Mathématiques Pures et Appliquées, Volume 198 (2025), p. 103687 | DOI:10.1016/j.matpur.2025.103687
  • Gao, Yongshuai; Luo, Yong Axial symmetry and refined spike profiles of ground states for rotating two-component Bose gases, Journal of Differential Equations, Volume 427 (2025), p. 761 | DOI:10.1016/j.jde.2025.02.017
  • He, Huiting; Liu, Chungen; Zuo, Jiabin Ground states of a coupled pseudo-relativistic Hartree system: Existence and concentration behavior, Journal of Differential Equations, Volume 428 (2025), p. 585 | DOI:10.1016/j.jde.2025.02.019
  • Gao, Yongshuai; Li, Shuai; Zhong, Peiye Existence and asymptotic behavior of minimizers for rotating Bose-Einstein condensations in bounded domains, Journal of Mathematical Analysis and Applications, Volume 543 (2025) no. 1, p. 128833 | DOI:10.1016/j.jmaa.2024.128833
  • Fu, Yunxia; Liu, Xinji; Wu, Shuang The uniqueness of minimizers for L2‐subcritical inhomogeneous variational problems with a spatially decaying nonlinearity, Mathematical Methods in the Applied Sciences, Volume 48 (2025) no. 4, p. 4757 | DOI:10.1002/mma.10575
  • Liu, Lintao; Rădulescu, Vicenţiu D; Yuan, Shuai Constraint minimizers of mass critical fractional Kirchhoff equations: concentration and uniqueness, Nonlinearity, Volume 38 (2025) no. 4, p. 045008 | DOI:10.1088/1361-6544/adbc3b
  • Mo, Yichun; Ali Youssouf, Abdoulaye; Feng, Binhua Blow-Up Behaviors of Minimizers for the H˙γc-Critical Fourth-Order Nonlinear Schrödinger Equation with the Mixed Dispersions, Qualitative Theory of Dynamical Systems, Volume 24 (2025) no. 2 | DOI:10.1007/s12346-025-01243-9
  • Chen, Bin; Gao, Yongshuai; Guo, Yujin; Wu, Yue Minimizers of L2-subcritical variational problems with spatially decaying nonlinearities in bounded domains, Acta Mathematica Scientia, Volume 44 (2024) no. 3, p. 984 | DOI:10.1007/s10473-024-0312-y
  • Yang, Jing Existence of normalized peak solutions for a coupled nonlinear Schrödinger system, Advances in Nonlinear Analysis, Volume 13 (2024) no. 1 | DOI:10.1515/anona-2023-0113
  • Zhang, Jiafeng; Lei, Chunyu; Lei, Jun The existence and nonexistence of normalized solutions for a p-Laplacian equation, Applied Mathematics Letters, Volume 148 (2024), p. 108890 | DOI:10.1016/j.aml.2023.108890
  • He, Pengfei; Suo, Hongmin Radial symmetric normalized solutions for a singular elliptic equation, Applied Mathematics Letters, Volume 152 (2024), p. 109024 | DOI:10.1016/j.aml.2024.109024
  • Zhu, Xincai; He, Chunxia Blow-Up Analysis of L2-Norm Solutions for an Elliptic Equation with a Varying Nonlocal Term, Axioms, Volume 13 (2024) no. 5, p. 336 | DOI:10.3390/axioms13050336
  • Zhu, Xincai; Wu, Hanxiao Limit Property of an L2-Normalized Solution for an L2-Subcritical Kirchhoff-Type Equation with a Variable Exponent, Axioms, Volume 13 (2024) no. 9, p. 571 | DOI:10.3390/axioms13090571
  • LI, DEKE; WANG, QINGXUAN A NOTE ON NORMALISED GROUND STATES FOR THE TWO-DIMENSIONAL CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION, Bulletin of the Australian Mathematical Society, Volume 109 (2024) no. 3, p. 552 | DOI:10.1017/s0004972723000977
  • Liu, Lintao; Teng, Kaimin; Yang, Jie; Chen, Haibo Minimizers of fractional NLS energy functionals in R2, Computational and Applied Mathematics, Volume 43 (2024) no. 1 | DOI:10.1007/s40314-023-02531-3
  • Zhu, Xincai; Zhu, Yajie Existence and limit behavior of constraint minimizers for elliptic equations with two nonlocal terms, Electronic Research Archive, Volume 32 (2024) no. 8, p. 4991 | DOI:10.3934/era.2024230
  • Guo, Qidong; He, Rui; Li, Benniao; Yan, Shusen Normalized solutions for nonlinear Schrödinger equations involving mass subcritical and supercritical exponents, Journal of Differential Equations, Volume 413 (2024), p. 462 | DOI:10.1016/j.jde.2024.08.071
  • Guo, Yujin; Li, Yan; Luo, Yong Ground states of attractive Bose gases in rotating anharmonic traps, Journal of Functional Analysis, Volume 286 (2024) no. 3, p. 110243 | DOI:10.1016/j.jfa.2023.110243
  • Zhu, Xincai; Wu, Hanxiao Existence and Limit Behavior of Constraint Minimizers for a Varying Non-Local Kirchhoff-Type Energy Functional, Mathematics, Volume 12 (2024) no. 5, p. 661 | DOI:10.3390/math12050661
  • Zhu, Xincai; Wang, Changjian Mass Concentration Behavior of Attractive Bose–Einstein Condensates with Sinusoidal Potential in a Circular Region, Mediterranean Journal of Mathematics, Volume 21 (2024) no. 1 | DOI:10.1007/s00009-023-02549-1
  • Tian, Tian; Wang, Jun; Li, Xiaoguang Existence and mass concentration of standing waves for inhomogeneous NLS equation with a bounded potential, Nonlinear Differential Equations and Applications NoDEA, Volume 31 (2024) no. 5 | DOI:10.1007/s00030-024-00969-w
  • He, Qihan; Yang, Lianfeng; Zeng, Xiaoyu Existence and Limiting Profiles of Boosted Ground States for the Pseudo-Relativistic Schrödinger Equation with Focusing Power Type Nonlinearity, Potential Analysis (2024) | DOI:10.1007/s11118-024-10167-z
  • Wenshuai, Peng; Wenxia, Yang; Xiaoyu, Zeng Uniqueness of ground states for the Gross-Pitaevskii energy functional under ring-shaped potentials, SCIENTIA SINICA Mathematica, Volume 54 (2024) no. 2, p. 161 | DOI:10.1360/ssm-2023-0185
  • Peng, Wenshuai; Wang, Zhengping; Zeng, Xiaoyu; Zhou, Huan-Song Ground States of Two-Component Bose–Einstein Condensates with Josephson Junction: The Endpoint Cases, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 6, p. 6963 | DOI:10.1137/23m1613323
  • Chen, Wenjing; Huang, Xiaomeng Normalized Multi-peak Solutions to Nonlinear Elliptic Problems, The Journal of Geometric Analysis, Volume 34 (2024) no. 3 | DOI:10.1007/s12220-023-01514-4
  • Liu, Lintao; Teng, Kaimin; Yuan, Shuai Asymptotic Uniqueness of Minimizers for Hartree Type Equations with Fractional Laplacian, The Journal of Geometric Analysis, Volume 34 (2024) no. 6 | DOI:10.1007/s12220-024-01608-7
  • Guo, Helin; Liu, Haolin; Zhao, Lingling Concentration behavior and local uniqueness of normalized solutions for Kirchhoff type equation, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 3 | DOI:10.1007/s00033-024-02231-w
  • Lou, Qingjun; Zhang, Zhitao Multiplicity and concentration of normalized solutions to p-Laplacian equations, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 3 | DOI:10.1007/s00033-024-02219-6
  • Kong, Lingzheng; Chen, Haibo Normalized Ground States for the Mass-Energy Doubly Critical Kirchhoff Equations, Acta Applicandae Mathematicae, Volume 186 (2023) no. 1 | DOI:10.1007/s10440-023-00584-4
  • Wang, Yun Bo; Zeng, Xiao Yu; Zhou, Huan Song Asymptotic Behavior of Least Energy Solutions for a Fractional Laplacian Eigenvalue Problem on ℝN, Acta Mathematica Sinica, English Series, Volume 39 (2023) no. 4, p. 707 | DOI:10.1007/s10114-023-1074-5
  • Wang, Chao; Sun, Juntao Normalized solutions for the p-Laplacian equation with a trapping potential, Advances in Nonlinear Analysis, Volume 12 (2023) no. 1 | DOI:10.1515/anona-2022-0291
  • Guo, Qing; Yang, Jing Excited states for two-component Bose-Einstein condensates in dimension two, Journal of Differential Equations, Volume 343 (2023), p. 659 | DOI:10.1016/j.jde.2022.10.034
  • Hu, Tingxi; Lu, Lu Concentration and local uniqueness of minimizers for mass critical degenerate Kirchhoff energy functional, Journal of Differential Equations, Volume 363 (2023), p. 275 | DOI:10.1016/j.jde.2023.03.023
  • Guo, Yujin; Liang, Wenning; Li, Yan Existence and uniqueness of constraint minimizers for the planar Schrödinger-Poisson system with logarithmic potentials, Journal of Differential Equations, Volume 369 (2023), p. 299 | DOI:10.1016/j.jde.2023.06.007
  • Wu, Yuanda; Zeng, Xiaoyu; Zhang, Yimin The existence and asymptotic behavior of normalized solutions for Kirchhoff equation with singular potential, Journal of Mathematical Analysis and Applications, Volume 528 (2023) no. 2, p. 127522 | DOI:10.1016/j.jmaa.2023.127522
  • Liu, Lintao; Teng, Kaimin; Yang, Jie; Chen, Haibo Properties of minimizers for the fractional Kirchhoff energy functional, Journal of Mathematical Physics, Volume 64 (2023) no. 8 | DOI:10.1063/5.0157267
  • Gao, Yongshuai; Luo, Yong Mass concentration and uniqueness of ground states for mass subcritical rotational nonlinear Schrödinger equations, Nonlinear Analysis, Volume 230 (2023), p. 113246 | DOI:10.1016/j.na.2023.113246
  • Liu, Lintao; Teng, Kaimin; Yang, Jie; Chen, Haibo Concentration behaviour of normalized ground states of the mass critical fractional Schrödinger equations with ring-shaped potentials, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 153 (2023) no. 6, p. 1993 | DOI:10.1017/prm.2022.81
  • Zhang, Jianjun; Zhong, Xuexiu; Zhou, Huansong Bifurcation from the essential spectrum for an elliptic equation with general nonlinearities, Science China Mathematics, Volume 66 (2023) no. 10, p. 2243 | DOI:10.1007/s11425-022-2049-1
  • Deng, Yinbin; Guo, Yujin; Xu, Liangshun Limiting profiles of two-component attractive Bose-Einstein condensates passing an obstacle, Science China Mathematics, Volume 66 (2023) no. 8, p. 1767 | DOI:10.1007/s11425-022-2006-1
  • Guo, Qing; Tian, Shuying; Zhou, Yang Curve-like concentration for Bose-Einstein condensates, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 2 | DOI:10.1007/s00526-021-02171-7
  • Wang, Qingxuan; Feng, Binhua; Li, Yuan; Shi, Qihong On Asymptotic Properties of Semi-relativistic Hartree Equation with combined Hartree-type nonlinearities, Communications on Pure Applied Analysis, Volume 21 (2022) no. 4, p. 1225 | DOI:10.3934/cpaa.2022017
  • Luo, Yong; Zhang, Shu Concentration behavior of ground states for L2-critical Schrödinger Equation with a spatially decaying nonlinearity, Communications on Pure Applied Analysis, Volume 21 (2022) no. 4, p. 1481 | DOI:10.3934/cpaa.2022026
  • He, Zhiqian; Feng, Binhua; Liu, Jiayin Existence, stability and asymptotic behaviour of normalized solutions for the Davey-Stewartson system, Discrete and Continuous Dynamical Systems, Volume 42 (2022) no. 12, p. 5937 | DOI:10.3934/dcds.2022132
  • Wang, Wenqing; Zeng, Xiaoyu; Zhou, Huan-Song A constrained minimization problem related to two coupled pseudo-relativistic Hartree equations, Journal of Differential Equations, Volume 320 (2022), p. 174 | DOI:10.1016/j.jde.2022.02.059
  • Du, Miao; Wang, Siyu On the existence and limit behavior of ground states for two coupled Hartree equations, Journal of Differential Equations, Volume 340 (2022), p. 179 | DOI:10.1016/j.jde.2022.08.037
  • Wei, Juncheng; Wu, Yuanze Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities, Journal of Functional Analysis, Volume 283 (2022) no. 6, p. 109574 | DOI:10.1016/j.jfa.2022.109574
  • Guo, Qing; Zhao, Leiga Non-degeneracy of synchronized vector solutions for weakly coupled nonlinear schrödiner systems, Proceedings of the Edinburgh Mathematical Society, Volume 65 (2022) no. 2, p. 441 | DOI:10.1017/s0013091522000165
  • Ye, Weiwei; Shen, Zifei; Yang, Minbo Normalized Solutions for a Critical Hartree Equation with Perturbation, The Journal of Geometric Analysis, Volume 32 (2022) no. 9 | DOI:10.1007/s12220-022-00986-0
  • Wang, Qingxuan; Feng, Binhua On a parameter-stability for normalized ground states of two-dimensional cubic–quintic nonlinear Schrödinger equations, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 5 | DOI:10.1007/s00033-022-01820-x
  • Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. The Nonlinear Schrödinger Equation for Orthonormal Functions: Existence of Ground States, Archive for Rational Mechanics and Analysis, Volume 240 (2021) no. 3, p. 1203 | DOI:10.1007/s00205-021-01634-7
  • Luo, Peng; Peng, Shuangjie; Wei, Juncheng; Yan, Shusen Excited states of Bose–Einstein condensates with degenerate attractive interactions, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 4 | DOI:10.1007/s00526-021-02046-x
  • Hu, Tingxi; Tang, Chun-Lei Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 6 | DOI:10.1007/s00526-021-02018-1
  • Guo, Yujin; Luo, Yong; Peng, Shuangjie Local uniqueness of ground states for rotating bose-einstein condensates with attractive interactions, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 6 | DOI:10.1007/s00526-021-02055-w
  • Yang, Jiaxuan; Li, Yongqing; Wang, Zhi-Qiang Radial and non-radial solutions for a nonlinear Schrodinger equation with a constraint, Electronic Journal of Differential Equations (2021) no. Special Issue 01, p. 225 | DOI:10.58997/ejde.sp.01.y1
  • Deng, Yinbin; Guo, Yujin; Xu, Liangshun Limit behavior of attractive Bose-Einstein condensates passing an obstacle, Journal of Differential Equations, Volume 272 (2021), p. 370 | DOI:10.1016/j.jde.2020.10.002
  • Li, Yan; Luo, Yong Existence and uniqueness of ground states for attractive Bose–Einstein condensates in box-shaped traps, Journal of Mathematical Physics, Volume 62 (2021) no. 3 | DOI:10.1063/5.0039100
  • Gao, Yongshuai; Li, Shuai Constraint minimizers of inhomogeneous mass subcritical minimization problems, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 13, p. 10062 | DOI:10.1002/mma.7390
  • Guo, Qing; Xie, Huafei Existence and local uniqueness of normalized solutions for two-component Bose–Einstein condensates, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 6 | DOI:10.1007/s00033-021-01619-2
  • Phan, Thanh Viet Blow-up Profile of the Focusing Gross-Pitaevskii Minimizer Under Self-Gravitating Effect, Acta Mathematica Vietnamica, Volume 45 (2020) no. 3, p. 611 | DOI:10.1007/s40306-018-0298-4
  • Luo, Yong; Zhu, Xincai Mass concentration behavior of Bose–Einstein condensates with attractive interactions in bounded domains, Applicable Analysis, Volume 99 (2020) no. 14, p. 2414 | DOI:10.1080/00036811.2019.1566529
  • Guo, Yujin; Luo, Yong; Yang, Wen The Nonexistence of Vortices for Rotating Bose–Einstein Condensates with Attractive Interactions, Archive for Rational Mechanics and Analysis, Volume 238 (2020) no. 3, p. 1231 | DOI:10.1007/s00205-020-01564-w
  • Wang, Jun; Zhao, Tingting; Xiao, Lu Existence and asymptotical behavior of the minimizer of Hartree type equation with periodic potentials, Complex Variables and Elliptic Equations, Volume 65 (2020) no. 5, p. 740 | DOI:10.1080/17476933.2019.1618284
  • Dinh, Van Duong Asymptotic behavior of constraint minimizers for the mass-critical fractional nonlinear Schrödinger equation with a subcritical perturbation, Journal of Evolution Equations, Volume 20 (2020) no. 4, p. 1511 | DOI:10.1007/s00028-020-00564-3
  • Guo, Yujin; Zeng, Xiaoyu The Lieb-Yau conjecture for ground states of pseudo-relativistic Boson stars, Journal of Functional Analysis, Volume 278 (2020) no. 12, p. 108510 | DOI:10.1016/j.jfa.2020.108510
  • Xu, Liangshun Ground states of two-component Bose–Einstein condensates passing an obstacle, Journal of Mathematical Physics, Volume 61 (2020) no. 6 | DOI:10.1063/5.0004998
  • Chen, Ruipeng; Liu, Jiayin Asymptotic behavior of normalized ground states for the fractional Schrödinger equation with combined L2‐critical and L2‐subcritical nonlinearities, Mathematical Methods in the Applied Sciences (2020) | DOI:10.1002/mma.6221
  • Dinh, Van Duong Existence and blow‐up behavior of standing waves for the Gross–Pitaevskii functional with a higher order interaction, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 12, p. 7087 | DOI:10.1002/mma.6434
  • Dinh, Van Duong Blow-up behavior of prescribed mass minimizers for nonlinear Choquard equations with singular potentials, Monatshefte für Mathematik, Volume 192 (2020) no. 3, p. 551 | DOI:10.1007/s00605-020-01387-7
  • Yang, Jianfu; Yang, Jinge On supercritical nonlinear Schrödinger equations with ellipse-shaped potentials, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 150 (2020) no. 6, p. 3187 | DOI:10.1017/prm.2019.66
  • Dinh, Van Duong Existence, non-existence and blow-up behaviour of minimizers for the mass-critical fractional non-linear Schrödinger equations with periodic potentials, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 150 (2020) no. 6, p. 3252 | DOI:10.1017/prm.2019.64
  • Guo, Helin; Zhou, Huan-Song A constrained variational problem arising in attractive Bose–Einstein condensate with ellipse-shaped potential, Applied Mathematics Letters, Volume 87 (2019), p. 35 | DOI:10.1016/j.aml.2018.07.023
  • Li, Gongbao; Ye, Hongyu On the concentration phenomenon of L2-subcritical constrained minimizers for a class of Kirchhoff equations with potentials, Journal of Differential Equations, Volume 266 (2019) no. 11, p. 7101 | DOI:10.1016/j.jde.2018.11.024
  • Guo, Yujin; Li, Shuai; Wei, Juncheng; Zeng, Xiaoyu Ground states of two-component attractive Bose–Einstein condensates I: Existence and uniqueness, Journal of Functional Analysis, Volume 276 (2019) no. 1, p. 183 | DOI:10.1016/j.jfa.2018.09.015
  • Li, Yuhua; Hao, Xiaocui; Shi, Junping The existence of constrained minimizers for a class of nonlinear Kirchhoff–Schrödinger equations with doubly critical exponents in dimension four, Nonlinear Analysis, Volume 186 (2019), p. 99 | DOI:10.1016/j.na.2018.12.010
  • Bao, Weizhu; Cai, Yongyong; Ruan, Xinran Ground states of Bose–Einstein condensates with higher order interaction, Physica D: Nonlinear Phenomena, Volume 386-387 (2019), p. 38 | DOI:10.1016/j.physd.2018.08.006
  • Du, Miao; Tian, Lixin; Wang, Jun; Zhang, Fubao Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 149 (2019) no. 03, p. 617 | DOI:10.1017/prm.2018.41
  • Phan, Thanh Viet Existence and Blow-up of Attractive Gross-Pitaevskii Minimizers with General Bounded Potentials, Reports on Mathematical Physics, Volume 84 (2019) no. 3, p. 351 | DOI:10.1016/s0034-4877(19)30097-7
  • Eychenne, Arnaud; Rougerie, Nicolas On the Stability of 2D Dipolar Bose–Einstein Condensates, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 2, p. 1371 | DOI:10.1137/18m1216663
  • Li, Shuai; Zhu, Xincai Mass concentration and local uniqueness of ground states for L2 L 2 -subcritical nonlinear Schrödinger equations, Zeitschrift für angewandte Mathematik und Physik, Volume 70 (2019) no. 1 | DOI:10.1007/s00033-019-1077-3
  • Li, Yuan; Zhao, Dun; Wang, Qingxuan Concentration behavior of nonlinear Hartree-type equation with almost mass critical exponent, Zeitschrift für angewandte Mathematik und Physik, Volume 70 (2019) no. 4 | DOI:10.1007/s00033-019-1172-5
  • ZHU, Xincai Existence and blow-up behavior of constrained minimizers for Schrödinger-Poisson-Slater system, Acta Mathematica Scientia, Volume 38 (2018) no. 2, p. 733 | DOI:10.1016/s0252-9602(18)30777-x
  • Zeng, Xiaoyu; Zhang, Yimin Existence and Asymptotic Behavior for the Ground State of Quasilinear Elliptic Equations, Advanced Nonlinear Studies, Volume 18 (2018) no. 4, p. 725 | DOI:10.1515/ans-2018-0005
  • Guo, Yujin; Zeng, Xiaoyu; Zhou, Huan-Song Blow-up behavior of ground states for a nonlinear Schrödinger system with attractive and repulsive interactions, Journal of Differential Equations, Volume 264 (2018) no. 2, p. 1411 | DOI:10.1016/j.jde.2017.09.039
  • Guo, Yujin; Luo, Yong; Zhang, Qi Minimizers of mass critical Hartree energy functionals in bounded domains, Journal of Differential Equations, Volume 265 (2018) no. 10, p. 5177 | DOI:10.1016/j.jde.2018.06.032
  • Wang, Jun; Yang, Wen Normalized solutions and asymptotical behavior of minimizer for the coupled Hartree equations, Journal of Differential Equations, Volume 265 (2018) no. 2, p. 501 | DOI:10.1016/j.jde.2018.03.003
  • Cao, Xiaofei; Xu, Junxiang; Wang, Jun; Zhang, Fubao Normalized solutions for a coupled Schrödinger system with saturable nonlinearities, Journal of Mathematical Analysis and Applications, Volume 459 (2018) no. 1, p. 247 | DOI:10.1016/j.jmaa.2017.10.057
  • Deng, Yinbin; Guo, Yujin; Lu, Lu Threshold behavior and uniqueness of ground states for mass critical inhomogeneous Schrödinger equations, Journal of Mathematical Physics, Volume 59 (2018) no. 1 | DOI:10.1063/1.5008924
  • Guo, Yujin; Luo, Yong; Wang, Zhi-Qiang Limit behavior of mass critical Hartree minimization problems with steep potential wells, Journal of Mathematical Physics, Volume 59 (2018) no. 6 | DOI:10.1063/1.5025730
  • Luo, Yong Uniqueness of ground states for nonlinear Hartree equations, Journal of Mathematical Physics, Volume 59 (2018) no. 8 | DOI:10.1063/1.5051026
  • Lewin, Mathieu; Thành Nam, Phan; Rougerie, Nicolas Blow-Up Profile of Rotating 2D Focusing Bose Gases, Macroscopic Limits of Quantum Systems, Volume 270 (2018), p. 145 | DOI:10.1007/978-3-030-01602-9_7
  • Guo, Yujin; Wang, Zhi-Qiang; Zeng, Xiaoyu; Zhou, Huan-Song Properties of ground states of attractive Gross–Pitaevskii equations with multi-well potentials, Nonlinearity, Volume 31 (2018) no. 3, p. 957 | DOI:10.1088/1361-6544/aa99a8
  • Phan, Thanh Viet Blowup for biharmonic Schrödinger equation with critical nonlinearity, Zeitschrift für angewandte Mathematik und Physik, Volume 69 (2018) no. 2 | DOI:10.1007/s00033-018-0922-0
  • Guo, Yujin; Zeng, Xiaoyu Ground states of pseudo-relativistic boson stars under the critical stellar mass, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 34 (2017) no. 6, p. 1611 | DOI:10.1016/j.anihpc.2017.04.001
  • Zeng, Xiaoyu Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations, Discrete Continuous Dynamical Systems - A, Volume 37 (2017) no. 3, p. 1749 | DOI:10.3934/dcds.2017073
  • Guo, Yujin; Zeng, Xiaoyu; Zhou, Huan-Song Blow-up solutions for two coupled Gross-Pitaevskii equations with attractive interactions, Discrete and Continuous Dynamical Systems, Volume 37 (2017) no. 7, p. 3749 | DOI:10.3934/dcds.2017159
  • Wang, Qingxuan; Zhao, Dun Existence and mass concentration of 2D attractive Bose–Einstein condensates with periodic potentials, Journal of Differential Equations, Volume 262 (2017) no. 3, p. 2684 | DOI:10.1016/j.jde.2016.11.004
  • Zeng, Xiaoyu; Zhang, Liang Normalized solutions for Schrödinger–Poisson–Slater equations with unbounded potentials, Journal of Mathematical Analysis and Applications, Volume 452 (2017) no. 1, p. 47 | DOI:10.1016/j.jmaa.2017.02.053
  • Phan, Thanh Viet Blow-up profile of Bose-Einstein condensate with singular potentials, Journal of Mathematical Physics, Volume 58 (2017) no. 7 | DOI:10.1063/1.4995393
  • Nguyen, Dinh-Thi On Blow-up Profile of Ground States of Boson Stars with External Potential, Journal of Statistical Physics, Volume 169 (2017) no. 2, p. 395 | DOI:10.1007/s10955-017-1872-1
  • Li, Shuai; Zhang, Qi; Zhu, Xincai Existence and limit behavior of prescribed L2‐norm solutions for Schrödinger‐Poisson‐Slater systems in R3, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 18, p. 7705 | DOI:10.1002/mma.4556
  • Gu, Long-Jiang; Zeng, Xiaoyu; Zhou, Huan-Song Eigenvalue problem for a p-Laplacian equation with trapping potentials, Nonlinear Analysis: Theory, Methods Applications, Volume 148 (2017), p. 212 | DOI:10.1016/j.na.2016.10.002
  • Guo, Yujin; Lin, Changshou; Wei, Juncheng Local Uniqueness and Refined Spike Profiles of Ground States for Two-Dimensional Attractive Bose-Einstein Condensates, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 5, p. 3671 | DOI:10.1137/16m1100290
  • Li, Shuai; Xiang, Jianlin; Zeng, Xiaoyu Ground states of nonlinear Choquard equations with multi-well potentials, Journal of Mathematical Physics, Volume 57 (2016) no. 8 | DOI:10.1063/1.4961158
  • Zeng, Yonglong; Chen, Kuisheng Remarks on Normalized Solutions for L2-Critical Kirchhoff Problems, Taiwanese Journal of Mathematics, Volume 20 (2016) no. 3 | DOI:10.11650/tjm.20.2016.6548
  • Deng, Yinbin; Lu, Lu; Shuai, Wei Constraint minimizers of mass critical Hartree energy functionals: Existence and mass concentration, Journal of Mathematical Physics, Volume 56 (2015) no. 6 | DOI:10.1063/1.4922368

Cité par 106 documents. Sources : Crossref