This paper is concerned with the properties of
Mots-clés : Nonlinear elliptic equation, Constrained minimization, Gross–Pitaevskii functional, Bose–Einstein condensates, Attractive interactions, Ring-shaped potential
@article{AIHPC_2016__33_3_809_0, author = {Guo, Yujin and Zeng, Xiaoyu and Zhou, Huan-Song}, title = {Energy estimates and symmetry breaking in attractive {Bose{\textendash}Einstein} condensates with ring-shaped potentials}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {809--828}, publisher = {Elsevier}, volume = {33}, number = {3}, year = {2016}, doi = {10.1016/j.anihpc.2015.01.005}, zbl = {1341.35053}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2015.01.005/} }
TY - JOUR AU - Guo, Yujin AU - Zeng, Xiaoyu AU - Zhou, Huan-Song TI - Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 809 EP - 828 VL - 33 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2015.01.005/ DO - 10.1016/j.anihpc.2015.01.005 LA - en ID - AIHPC_2016__33_3_809_0 ER -
%0 Journal Article %A Guo, Yujin %A Zeng, Xiaoyu %A Zhou, Huan-Song %T Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 809-828 %V 33 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2015.01.005/ %R 10.1016/j.anihpc.2015.01.005 %G en %F AIHPC_2016__33_3_809_0
Guo, Yujin; Zeng, Xiaoyu; Zhou, Huan-Song. Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 3, pp. 809-828. doi : 10.1016/j.anihpc.2015.01.005. https://www.numdam.org/articles/10.1016/j.anihpc.2015.01.005/
[1] Observation of Bose–Einstein condensation in a dilute atomic vapor, Science, Volume 269 (1995), pp. 198–201 | DOI
[2] Mathematical theory and numerical methods for Bose–Einstein condensation, Kinet. Relat. Models, Volume 6 (2013), pp. 1–135 | Zbl
[3] Semilinear Schrödinger Equations, Courant Lecture Notes in Math., vol. 10, Courant Institute of Mathematical Science/AMS, New York, 2003 | DOI | Zbl
[4] Bose Einstein condensation in an optical lattice, Phys. Rev. Lett., Volume 82 (1999), pp. 2022–2025
[5] Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Ration. Mech. Anal., Volume 52 (1973), pp. 161–180 | DOI | Zbl
[6] Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999), pp. 463–512 | DOI
[7] Homoclinic orbits for first order Hamiltonian systems, J. Math. Anal. Appl., Volume 189 (1995), pp. 585–601 | Zbl
[8] Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate, Ann. Math., Volume 172 (2010), pp. 291–370 | DOI | Zbl
[9] Symmetry of positive solutions of nonlinear elliptic equations in
[10] Elliptic Partial Differential Equations of Second Order, Springer, 1997
[11] Structure of a quantized vortex in boson systems, Nuovo Cimento, Volume 20 (1961), pp. 454–466 | DOI | Zbl
[12] Hydrodynamics of a superfluid condensate, J. Math. Phys., Volume 4 (1963), pp. 195–207 | DOI
[13] On the mass concentration for Bose–Einstein condensates with attractive interactions, Lett. Math. Phys., Volume 104 (2014), pp. 141–156 | Zbl
[14] Bose–Einstein condensation in a circular waveguide, Phys. Rev. Lett., Volume 95 (2005), pp. 143201 | DOI
[15] Dynamics in cold atomic gases: resonant behaviour of the quantum delta-kicked accelerator and Bose–Einstein condensates in ring traps, Durham University, 2010 (Ph.D. Thesis)
[16] Rotational response of two-component Bose–Einstein condensates in ring traps, Phys. Rev. A, Volume 81 (2010), pp. 061602(R) | DOI
[17] Elliptic Partial Differential Equations, Courant Lect. Notes Math., vol. 1, Courant Institute of Mathematical Science/AMS, New York, 2011 | Zbl
[18] Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation, Mich. Math. J., Volume 41 (1994) no. 1, pp. 151–173 | DOI | Zbl
[19] Uniqueness of positive solutions of
[20] Radial symmetry of positive solutions of nonlinear elliptic equations in
[21] Analysis, Grad. Stud. in Math., vol. 14, Amer. Math. Soc., Providence, RI, 2001 | Zbl
[22] Proof of Bose–Einstein condensation for dilute trapped gases, Phys. Rev. Lett., Volume 88 (2002), pp. 170409-1–170409-4
[23] The Mathematics of the Bose Gas and Its Condensation, Oberwolfach Seminars, vol. 34, Birkhäuser Verlag, Basel, 2005 | Zbl
[24] Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional, Phys. Rev. A, Volume 61 (2000), pp. 043602-1–043602-13
[25] A rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas, Commun. Math. Phys., Volume 224 (2001), pp. 17–31 | Zbl
[26] The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984), pp. 223–283 | Numdam | Zbl
[27] Uniqueness of positive radial solutions of
[28] On the shape of least-energy solutions to a semilinear Neumann problem, Commun. Pure Appl. Math., Volume 44 (1991), pp. 819–851 | Zbl
[29] Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, Volume 13 (1961), pp. 451–454
[30] Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York–London, 1978 | MR | Zbl
[31] Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap, Phys. Rev. Lett., Volume 99 (2007), pp. 260401
[32] Mixtures of Bose gases confined in a ring potential, Phys. Rev. Lett., Volume 103 (2009), pp. 100404 | DOI
[33] An introduction to elliptic equations on
[34] On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys., Volume 153 (1993), pp. 229–244 | MR | Zbl
[35] Nonlinear Schrödinger equations and sharp interpolations estimates, Commun. Math. Phys., Volume 87 (1983), pp. 567–576 | DOI | MR | Zbl
- Critical mass phenomena and blow-up behaviors of ground states in stationary second order mean-field games systems with decreasing cost, Journal de Mathématiques Pures et Appliquées, Volume 198 (2025), p. 103687 | DOI:10.1016/j.matpur.2025.103687
- Axial symmetry and refined spike profiles of ground states for rotating two-component Bose gases, Journal of Differential Equations, Volume 427 (2025), p. 761 | DOI:10.1016/j.jde.2025.02.017
- Ground states of a coupled pseudo-relativistic Hartree system: Existence and concentration behavior, Journal of Differential Equations, Volume 428 (2025), p. 585 | DOI:10.1016/j.jde.2025.02.019
- Existence and asymptotic behavior of minimizers for rotating Bose-Einstein condensations in bounded domains, Journal of Mathematical Analysis and Applications, Volume 543 (2025) no. 1, p. 128833 | DOI:10.1016/j.jmaa.2024.128833
- The uniqueness of minimizers for L2‐subcritical inhomogeneous variational problems with a spatially decaying nonlinearity, Mathematical Methods in the Applied Sciences, Volume 48 (2025) no. 4, p. 4757 | DOI:10.1002/mma.10575
- Constraint minimizers of mass critical fractional Kirchhoff equations: concentration and uniqueness, Nonlinearity, Volume 38 (2025) no. 4, p. 045008 | DOI:10.1088/1361-6544/adbc3b
- Blow-Up Behaviors of Minimizers for the
-Critical Fourth-Order Nonlinear Schrödinger Equation with the Mixed Dispersions, Qualitative Theory of Dynamical Systems, Volume 24 (2025) no. 2 | DOI:10.1007/s12346-025-01243-9 - Minimizers of L2-subcritical variational problems with spatially decaying nonlinearities in bounded domains, Acta Mathematica Scientia, Volume 44 (2024) no. 3, p. 984 | DOI:10.1007/s10473-024-0312-y
- Existence of normalized peak solutions for a coupled nonlinear Schrödinger system, Advances in Nonlinear Analysis, Volume 13 (2024) no. 1 | DOI:10.1515/anona-2023-0113
- The existence and nonexistence of normalized solutions for a p-Laplacian equation, Applied Mathematics Letters, Volume 148 (2024), p. 108890 | DOI:10.1016/j.aml.2023.108890
- Radial symmetric normalized solutions for a singular elliptic equation, Applied Mathematics Letters, Volume 152 (2024), p. 109024 | DOI:10.1016/j.aml.2024.109024
- Blow-Up Analysis of L2-Norm Solutions for an Elliptic Equation with a Varying Nonlocal Term, Axioms, Volume 13 (2024) no. 5, p. 336 | DOI:10.3390/axioms13050336
- Limit Property of an L2-Normalized Solution for an L2-Subcritical Kirchhoff-Type Equation with a Variable Exponent, Axioms, Volume 13 (2024) no. 9, p. 571 | DOI:10.3390/axioms13090571
- A NOTE ON NORMALISED GROUND STATES FOR THE TWO-DIMENSIONAL CUBIC-QUINTIC NONLINEAR SCHRÖDINGER EQUATION, Bulletin of the Australian Mathematical Society, Volume 109 (2024) no. 3, p. 552 | DOI:10.1017/s0004972723000977
- Minimizers of fractional NLS energy functionals in
, Computational and Applied Mathematics, Volume 43 (2024) no. 1 | DOI:10.1007/s40314-023-02531-3 - Existence and limit behavior of constraint minimizers for elliptic equations with two nonlocal terms, Electronic Research Archive, Volume 32 (2024) no. 8, p. 4991 | DOI:10.3934/era.2024230
- Normalized solutions for nonlinear Schrödinger equations involving mass subcritical and supercritical exponents, Journal of Differential Equations, Volume 413 (2024), p. 462 | DOI:10.1016/j.jde.2024.08.071
- Ground states of attractive Bose gases in rotating anharmonic traps, Journal of Functional Analysis, Volume 286 (2024) no. 3, p. 110243 | DOI:10.1016/j.jfa.2023.110243
- Existence and Limit Behavior of Constraint Minimizers for a Varying Non-Local Kirchhoff-Type Energy Functional, Mathematics, Volume 12 (2024) no. 5, p. 661 | DOI:10.3390/math12050661
- Mass Concentration Behavior of Attractive Bose–Einstein Condensates with Sinusoidal Potential in a Circular Region, Mediterranean Journal of Mathematics, Volume 21 (2024) no. 1 | DOI:10.1007/s00009-023-02549-1
- Existence and mass concentration of standing waves for inhomogeneous NLS equation with a bounded potential, Nonlinear Differential Equations and Applications NoDEA, Volume 31 (2024) no. 5 | DOI:10.1007/s00030-024-00969-w
- Existence and Limiting Profiles of Boosted Ground States for the Pseudo-Relativistic Schrödinger Equation with Focusing Power Type Nonlinearity, Potential Analysis (2024) | DOI:10.1007/s11118-024-10167-z
- Uniqueness of ground states for the Gross-Pitaevskii energy functional under ring-shaped potentials, SCIENTIA SINICA Mathematica, Volume 54 (2024) no. 2, p. 161 | DOI:10.1360/ssm-2023-0185
- Ground States of Two-Component Bose–Einstein Condensates with Josephson Junction: The Endpoint Cases, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 6, p. 6963 | DOI:10.1137/23m1613323
- Normalized Multi-peak Solutions to Nonlinear Elliptic Problems, The Journal of Geometric Analysis, Volume 34 (2024) no. 3 | DOI:10.1007/s12220-023-01514-4
- Asymptotic Uniqueness of Minimizers for Hartree Type Equations with Fractional Laplacian, The Journal of Geometric Analysis, Volume 34 (2024) no. 6 | DOI:10.1007/s12220-024-01608-7
- Concentration behavior and local uniqueness of normalized solutions for Kirchhoff type equation, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 3 | DOI:10.1007/s00033-024-02231-w
- Multiplicity and concentration of normalized solutions to p-Laplacian equations, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 3 | DOI:10.1007/s00033-024-02219-6
- Normalized Ground States for the Mass-Energy Doubly Critical Kirchhoff Equations, Acta Applicandae Mathematicae, Volume 186 (2023) no. 1 | DOI:10.1007/s10440-023-00584-4
- Asymptotic Behavior of Least Energy Solutions for a Fractional Laplacian Eigenvalue Problem on ℝN, Acta Mathematica Sinica, English Series, Volume 39 (2023) no. 4, p. 707 | DOI:10.1007/s10114-023-1074-5
- Normalized solutions for the p-Laplacian equation with a trapping potential, Advances in Nonlinear Analysis, Volume 12 (2023) no. 1 | DOI:10.1515/anona-2022-0291
- Excited states for two-component Bose-Einstein condensates in dimension two, Journal of Differential Equations, Volume 343 (2023), p. 659 | DOI:10.1016/j.jde.2022.10.034
- Concentration and local uniqueness of minimizers for mass critical degenerate Kirchhoff energy functional, Journal of Differential Equations, Volume 363 (2023), p. 275 | DOI:10.1016/j.jde.2023.03.023
- Existence and uniqueness of constraint minimizers for the planar Schrödinger-Poisson system with logarithmic potentials, Journal of Differential Equations, Volume 369 (2023), p. 299 | DOI:10.1016/j.jde.2023.06.007
- The existence and asymptotic behavior of normalized solutions for Kirchhoff equation with singular potential, Journal of Mathematical Analysis and Applications, Volume 528 (2023) no. 2, p. 127522 | DOI:10.1016/j.jmaa.2023.127522
- Properties of minimizers for the fractional Kirchhoff energy functional, Journal of Mathematical Physics, Volume 64 (2023) no. 8 | DOI:10.1063/5.0157267
- Mass concentration and uniqueness of ground states for mass subcritical rotational nonlinear Schrödinger equations, Nonlinear Analysis, Volume 230 (2023), p. 113246 | DOI:10.1016/j.na.2023.113246
- Concentration behaviour of normalized ground states of the mass critical fractional Schrödinger equations with ring-shaped potentials, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 153 (2023) no. 6, p. 1993 | DOI:10.1017/prm.2022.81
- Bifurcation from the essential spectrum for an elliptic equation with general nonlinearities, Science China Mathematics, Volume 66 (2023) no. 10, p. 2243 | DOI:10.1007/s11425-022-2049-1
- Limiting profiles of two-component attractive Bose-Einstein condensates passing an obstacle, Science China Mathematics, Volume 66 (2023) no. 8, p. 1767 | DOI:10.1007/s11425-022-2006-1
- Curve-like concentration for Bose-Einstein condensates, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 2 | DOI:10.1007/s00526-021-02171-7
- On Asymptotic Properties of Semi-relativistic Hartree Equation with combined Hartree-type nonlinearities, Communications on Pure Applied Analysis, Volume 21 (2022) no. 4, p. 1225 | DOI:10.3934/cpaa.2022017
- Concentration behavior of ground states for
-critical Schrödinger Equation with a spatially decaying nonlinearity, Communications on Pure Applied Analysis, Volume 21 (2022) no. 4, p. 1481 | DOI:10.3934/cpaa.2022026 - Existence, stability and asymptotic behaviour of normalized solutions for the Davey-Stewartson system, Discrete and Continuous Dynamical Systems, Volume 42 (2022) no. 12, p. 5937 | DOI:10.3934/dcds.2022132
- A constrained minimization problem related to two coupled pseudo-relativistic Hartree equations, Journal of Differential Equations, Volume 320 (2022), p. 174 | DOI:10.1016/j.jde.2022.02.059
- On the existence and limit behavior of ground states for two coupled Hartree equations, Journal of Differential Equations, Volume 340 (2022), p. 179 | DOI:10.1016/j.jde.2022.08.037
- Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities, Journal of Functional Analysis, Volume 283 (2022) no. 6, p. 109574 | DOI:10.1016/j.jfa.2022.109574
- Non-degeneracy of synchronized vector solutions for weakly coupled nonlinear schrödiner systems, Proceedings of the Edinburgh Mathematical Society, Volume 65 (2022) no. 2, p. 441 | DOI:10.1017/s0013091522000165
- Normalized Solutions for a Critical Hartree Equation with Perturbation, The Journal of Geometric Analysis, Volume 32 (2022) no. 9 | DOI:10.1007/s12220-022-00986-0
- On a parameter-stability for normalized ground states of two-dimensional cubic–quintic nonlinear Schrödinger equations, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 5 | DOI:10.1007/s00033-022-01820-x
- The Nonlinear Schrödinger Equation for Orthonormal Functions: Existence of Ground States, Archive for Rational Mechanics and Analysis, Volume 240 (2021) no. 3, p. 1203 | DOI:10.1007/s00205-021-01634-7
- Excited states of Bose–Einstein condensates with degenerate attractive interactions, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 4 | DOI:10.1007/s00526-021-02046-x
- Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 6 | DOI:10.1007/s00526-021-02018-1
- Local uniqueness of ground states for rotating bose-einstein condensates with attractive interactions, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 6 | DOI:10.1007/s00526-021-02055-w
- Radial and non-radial solutions for a nonlinear Schrodinger equation with a constraint, Electronic Journal of Differential Equations (2021) no. Special Issue 01, p. 225 | DOI:10.58997/ejde.sp.01.y1
- Limit behavior of attractive Bose-Einstein condensates passing an obstacle, Journal of Differential Equations, Volume 272 (2021), p. 370 | DOI:10.1016/j.jde.2020.10.002
- Existence and uniqueness of ground states for attractive Bose–Einstein condensates in box-shaped traps, Journal of Mathematical Physics, Volume 62 (2021) no. 3 | DOI:10.1063/5.0039100
- Constraint minimizers of inhomogeneous mass subcritical minimization problems, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 13, p. 10062 | DOI:10.1002/mma.7390
- Existence and local uniqueness of normalized solutions for two-component Bose–Einstein condensates, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 6 | DOI:10.1007/s00033-021-01619-2
- Blow-up Profile of the Focusing Gross-Pitaevskii Minimizer Under Self-Gravitating Effect, Acta Mathematica Vietnamica, Volume 45 (2020) no. 3, p. 611 | DOI:10.1007/s40306-018-0298-4
- Mass concentration behavior of Bose–Einstein condensates with attractive interactions in bounded domains, Applicable Analysis, Volume 99 (2020) no. 14, p. 2414 | DOI:10.1080/00036811.2019.1566529
- The Nonexistence of Vortices for Rotating Bose–Einstein Condensates with Attractive Interactions, Archive for Rational Mechanics and Analysis, Volume 238 (2020) no. 3, p. 1231 | DOI:10.1007/s00205-020-01564-w
- Existence and asymptotical behavior of the minimizer of Hartree type equation with periodic potentials, Complex Variables and Elliptic Equations, Volume 65 (2020) no. 5, p. 740 | DOI:10.1080/17476933.2019.1618284
- Asymptotic behavior of constraint minimizers for the mass-critical fractional nonlinear Schrödinger equation with a subcritical perturbation, Journal of Evolution Equations, Volume 20 (2020) no. 4, p. 1511 | DOI:10.1007/s00028-020-00564-3
- The Lieb-Yau conjecture for ground states of pseudo-relativistic Boson stars, Journal of Functional Analysis, Volume 278 (2020) no. 12, p. 108510 | DOI:10.1016/j.jfa.2020.108510
- Ground states of two-component Bose–Einstein condensates passing an obstacle, Journal of Mathematical Physics, Volume 61 (2020) no. 6 | DOI:10.1063/5.0004998
- Asymptotic behavior of normalized ground states for the fractional Schrödinger equation with combined L2‐critical and L2‐subcritical nonlinearities, Mathematical Methods in the Applied Sciences (2020) | DOI:10.1002/mma.6221
- Existence and blow‐up behavior of standing waves for the Gross–Pitaevskii functional with a higher order interaction, Mathematical Methods in the Applied Sciences, Volume 43 (2020) no. 12, p. 7087 | DOI:10.1002/mma.6434
- Blow-up behavior of prescribed mass minimizers for nonlinear Choquard equations with singular potentials, Monatshefte für Mathematik, Volume 192 (2020) no. 3, p. 551 | DOI:10.1007/s00605-020-01387-7
- On supercritical nonlinear Schrödinger equations with ellipse-shaped potentials, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 150 (2020) no. 6, p. 3187 | DOI:10.1017/prm.2019.66
- Existence, non-existence and blow-up behaviour of minimizers for the mass-critical fractional non-linear Schrödinger equations with periodic potentials, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 150 (2020) no. 6, p. 3252 | DOI:10.1017/prm.2019.64
- A constrained variational problem arising in attractive Bose–Einstein condensate with ellipse-shaped potential, Applied Mathematics Letters, Volume 87 (2019), p. 35 | DOI:10.1016/j.aml.2018.07.023
- On the concentration phenomenon of L2-subcritical constrained minimizers for a class of Kirchhoff equations with potentials, Journal of Differential Equations, Volume 266 (2019) no. 11, p. 7101 | DOI:10.1016/j.jde.2018.11.024
- Ground states of two-component attractive Bose–Einstein condensates I: Existence and uniqueness, Journal of Functional Analysis, Volume 276 (2019) no. 1, p. 183 | DOI:10.1016/j.jfa.2018.09.015
- The existence of constrained minimizers for a class of nonlinear Kirchhoff–Schrödinger equations with doubly critical exponents in dimension four, Nonlinear Analysis, Volume 186 (2019), p. 99 | DOI:10.1016/j.na.2018.12.010
- Ground states of Bose–Einstein condensates with higher order interaction, Physica D: Nonlinear Phenomena, Volume 386-387 (2019), p. 38 | DOI:10.1016/j.physd.2018.08.006
- Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 149 (2019) no. 03, p. 617 | DOI:10.1017/prm.2018.41
- Existence and Blow-up of Attractive Gross-Pitaevskii Minimizers with General Bounded Potentials, Reports on Mathematical Physics, Volume 84 (2019) no. 3, p. 351 | DOI:10.1016/s0034-4877(19)30097-7
- On the Stability of 2D Dipolar Bose–Einstein Condensates, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 2, p. 1371 | DOI:10.1137/18m1216663
- Mass concentration and local uniqueness of ground states for
L 2 -subcritical nonlinear Schrödinger equations, Zeitschrift für angewandte Mathematik und Physik, Volume 70 (2019) no. 1 | DOI:10.1007/s00033-019-1077-3 - Concentration behavior of nonlinear Hartree-type equation with almost mass critical exponent, Zeitschrift für angewandte Mathematik und Physik, Volume 70 (2019) no. 4 | DOI:10.1007/s00033-019-1172-5
- Existence and blow-up behavior of constrained minimizers for Schrödinger-Poisson-Slater system, Acta Mathematica Scientia, Volume 38 (2018) no. 2, p. 733 | DOI:10.1016/s0252-9602(18)30777-x
- Existence and Asymptotic Behavior for the Ground State of Quasilinear Elliptic Equations, Advanced Nonlinear Studies, Volume 18 (2018) no. 4, p. 725 | DOI:10.1515/ans-2018-0005
- Blow-up behavior of ground states for a nonlinear Schrödinger system with attractive and repulsive interactions, Journal of Differential Equations, Volume 264 (2018) no. 2, p. 1411 | DOI:10.1016/j.jde.2017.09.039
- Minimizers of mass critical Hartree energy functionals in bounded domains, Journal of Differential Equations, Volume 265 (2018) no. 10, p. 5177 | DOI:10.1016/j.jde.2018.06.032
- Normalized solutions and asymptotical behavior of minimizer for the coupled Hartree equations, Journal of Differential Equations, Volume 265 (2018) no. 2, p. 501 | DOI:10.1016/j.jde.2018.03.003
- Normalized solutions for a coupled Schrödinger system with saturable nonlinearities, Journal of Mathematical Analysis and Applications, Volume 459 (2018) no. 1, p. 247 | DOI:10.1016/j.jmaa.2017.10.057
- Threshold behavior and uniqueness of ground states for mass critical inhomogeneous Schrödinger equations, Journal of Mathematical Physics, Volume 59 (2018) no. 1 | DOI:10.1063/1.5008924
- Limit behavior of mass critical Hartree minimization problems with steep potential wells, Journal of Mathematical Physics, Volume 59 (2018) no. 6 | DOI:10.1063/1.5025730
- Uniqueness of ground states for nonlinear Hartree equations, Journal of Mathematical Physics, Volume 59 (2018) no. 8 | DOI:10.1063/1.5051026
- Blow-Up Profile of Rotating 2D Focusing Bose Gases, Macroscopic Limits of Quantum Systems, Volume 270 (2018), p. 145 | DOI:10.1007/978-3-030-01602-9_7
- Properties of ground states of attractive Gross–Pitaevskii equations with multi-well potentials, Nonlinearity, Volume 31 (2018) no. 3, p. 957 | DOI:10.1088/1361-6544/aa99a8
- Blowup for biharmonic Schrödinger equation with critical nonlinearity, Zeitschrift für angewandte Mathematik und Physik, Volume 69 (2018) no. 2 | DOI:10.1007/s00033-018-0922-0
- Ground states of pseudo-relativistic boson stars under the critical stellar mass, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 34 (2017) no. 6, p. 1611 | DOI:10.1016/j.anihpc.2017.04.001
- Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations, Discrete Continuous Dynamical Systems - A, Volume 37 (2017) no. 3, p. 1749 | DOI:10.3934/dcds.2017073
- Blow-up solutions for two coupled Gross-Pitaevskii equations with attractive interactions, Discrete and Continuous Dynamical Systems, Volume 37 (2017) no. 7, p. 3749 | DOI:10.3934/dcds.2017159
- Existence and mass concentration of 2D attractive Bose–Einstein condensates with periodic potentials, Journal of Differential Equations, Volume 262 (2017) no. 3, p. 2684 | DOI:10.1016/j.jde.2016.11.004
- Normalized solutions for Schrödinger–Poisson–Slater equations with unbounded potentials, Journal of Mathematical Analysis and Applications, Volume 452 (2017) no. 1, p. 47 | DOI:10.1016/j.jmaa.2017.02.053
- Blow-up profile of Bose-Einstein condensate with singular potentials, Journal of Mathematical Physics, Volume 58 (2017) no. 7 | DOI:10.1063/1.4995393
- On Blow-up Profile of Ground States of Boson Stars with External Potential, Journal of Statistical Physics, Volume 169 (2017) no. 2, p. 395 | DOI:10.1007/s10955-017-1872-1
- Existence and limit behavior of prescribed L2‐norm solutions for Schrödinger‐Poisson‐Slater systems in R3, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 18, p. 7705 | DOI:10.1002/mma.4556
- Eigenvalue problem for a p-Laplacian equation with trapping potentials, Nonlinear Analysis: Theory, Methods Applications, Volume 148 (2017), p. 212 | DOI:10.1016/j.na.2016.10.002
- Local Uniqueness and Refined Spike Profiles of Ground States for Two-Dimensional Attractive Bose-Einstein Condensates, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 5, p. 3671 | DOI:10.1137/16m1100290
- Ground states of nonlinear Choquard equations with multi-well potentials, Journal of Mathematical Physics, Volume 57 (2016) no. 8 | DOI:10.1063/1.4961158
- Remarks on Normalized Solutions for
-Critical Kirchhoff Problems, Taiwanese Journal of Mathematics, Volume 20 (2016) no. 3 | DOI:10.11650/tjm.20.2016.6548 - Constraint minimizers of mass critical Hartree energy functionals: Existence and mass concentration, Journal of Mathematical Physics, Volume 56 (2015) no. 6 | DOI:10.1063/1.4922368
Cité par 106 documents. Sources : Crossref