We provide a characterization of intrinsic Lipschitz graphs in the sub-Riemannian Heisenberg groups in terms of their distributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to the equation , where w is a bounded measurable function.
@article{AIHPC_2015__32_5_925_0, author = {Bigolin, F. and Caravenna, L. and Serra Cassano, F.}, title = {Intrinsic {Lipschitz} graphs in {Heisenberg} groups and continuous solutions of a balance equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {925--963}, publisher = {Elsevier}, volume = {32}, number = {5}, year = {2015}, doi = {10.1016/j.anihpc.2014.05.001}, mrnumber = {3400438}, zbl = {1331.35089}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.001/} }
TY - JOUR AU - Bigolin, F. AU - Caravenna, L. AU - Serra Cassano, F. TI - Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 925 EP - 963 VL - 32 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.001/ DO - 10.1016/j.anihpc.2014.05.001 LA - en ID - AIHPC_2015__32_5_925_0 ER -
%0 Journal Article %A Bigolin, F. %A Caravenna, L. %A Serra Cassano, F. %T Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 925-963 %V 32 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.001/ %R 10.1016/j.anihpc.2014.05.001 %G en %F AIHPC_2015__32_5_925_0
Bigolin, F.; Caravenna, L.; Serra Cassano, F. Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 5, pp. 925-963. doi : 10.1016/j.anihpc.2014.05.001. http://www.numdam.org/articles/10.1016/j.anihpc.2014.05.001/
[1] G. Alberti, S. Bianchini, L. Caravenna, Eulerian Lagrangian and Broad continuous solutions to a balance law with non-convex flux, forthcoming. | MR
[2] Reduction on characteristics for continuous solution of a scalar balance law, Hyperbolic Problems: Theory, Numerics, Applications (2014), http://aimsciences.org/books/am/AMVol8.html | Zbl
, , ,[3] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publications, Oxford (2000) | MR | Zbl
, , ,[4] Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal. 16 no. 2 (2006), 187 -232 | MR | Zbl
, , ,[5] Intrinsic Regular Hypersurfaces and PDEs, the Case of the Heisenberg Group, LAP Lambert Academic Publishing (2010)
,[6] Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs, Adv. Calc. Var. 3 (2010), 69 -97 | MR | Zbl
, ,[7] Distributional solutions of Burgers' equation and Intrinsic regular graphs in Heisenberg groups, J. Math. Anal. Appl. 366 (2010), 561 -568 | MR | Zbl
, ,[8] An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Prog. Math. vol. 259 , Birkhäuser (2007) | MR | Zbl
, , , ,[9] Differentiating maps into and the geometry of BV functions, Ann. Math. (2) 171 no. 2 (2006), 1347 -1385 | MR | Zbl
, ,[10] Implicit function theorem in Carnot–Carathéodory spaces, Commun. Contemp. Math. 8 no. 5 (2006), 657 -680 | MR | Zbl
, ,[11] Smooth approximation for the intrinsic Lipschitz functions in the Heisenberg group, Calc. Var. Partial Differ. Equ. 49 (2014), 1279 -1308 | MR | Zbl
, , , ,[12] Measure Theory, Birkhäuser (1980) | MR
,[13] The flow associated to weakly differentiable vector fields, Publ. Sc. Norm. Super. vol. 12 , Birkhäuser (2009) | MR | Zbl
,[14] Lagrangian flows and the one dimensional Peano phenomenon for ODEs, J. Differ. Equ. 250 no. 7 (2011), 3135 -3149 | MR | Zbl
,[15] Continuous solutions for balance laws, Ric. Mat. 55 (2006), 79 -91 | MR | Zbl
,[16] Modern Geometry—Methods and Applications—Part III, Grad. Texts Math. vol. 124 , Springer-Verlag, New York (1990) | MR | Zbl
, , ,[17] Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479 -531 | MR | Zbl
, , ,[18] Regular hypersurfaces, intrinsic perimeter and Implicit Function Theorem in Carnot groups, Commun. Anal. Geom. 11 (2003), 909 -944 | MR | Zbl
, , ,[19] Regular submanifolds, graphs and area formula in Heisenberg groups, Adv. Math. 211 (2007), 152 -203 | MR | Zbl
, , ,[20] Differentiability of intrinsic Lipschitz functions within Heisenberg groups, J. Geom. Anal. 21 (2011), 1044 -1084 | MR | Zbl
, , ,[21] Carnot–Carathéodory spaces seen from within, , (ed.), Subriemannian Geometry, Prog. Math. vol. 144 , Birkhäuser Verlag, Basel (1996) | MR
,[22] Ordinary Differential Equations, Class. Appl. Math. vol. 38 , SIAM (2002) | MR | Zbl
,[23] Contributions à la théorie des ensembles boreliens et analytiques II and III, J. Fac. Sci., Hokkaido Univ. 8 (1939–1940), 79 -108 | MR
,[24] Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group, Ann. Sc. Norm. Super. Pisa, Cl. Sci. III (2004), 871 -896 | EuDML | Numdam | MR | Zbl
, ,[25] A Tour of Sub-Riemannian Geometries, their Geodesics and Applications, AMS, Providence (2002) | MR
,[26] Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math. 129 (1989), 1 -60 | MR | Zbl
,[27] A Course on Borel Sets, Grad. Texts Math. vol. 180 , Springer (1998) | MR | Zbl
,[28] Submanifolds in Carnot Groups, Birkhäuser (2008) | MR | Zbl
,Cité par Sources :