We prove the following variant of Marstrand's theorem about projections of cartesian products of sets:Let be Borel subsets of respectively, and be a surjective linear map. We set
@article{AIHPC_2015__32_4_833_0, author = {L\'opez, Jorge Erick and Moreira, Carlos Gustavo}, title = {A generalization of {Marstrand's} theorem for projections of cartesian products}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {833--840}, publisher = {Elsevier}, volume = {32}, number = {4}, year = {2015}, doi = {10.1016/j.anihpc.2014.04.002}, mrnumber = {3390086}, zbl = {1321.28019}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.04.002/} }
TY - JOUR AU - López, Jorge Erick AU - Moreira, Carlos Gustavo TI - A generalization of Marstrand's theorem for projections of cartesian products JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 833 EP - 840 VL - 32 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2014.04.002/ DO - 10.1016/j.anihpc.2014.04.002 LA - en ID - AIHPC_2015__32_4_833_0 ER -
%0 Journal Article %A López, Jorge Erick %A Moreira, Carlos Gustavo %T A generalization of Marstrand's theorem for projections of cartesian products %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 833-840 %V 32 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2014.04.002/ %R 10.1016/j.anihpc.2014.04.002 %G en %F AIHPC_2015__32_4_833_0
López, Jorge Erick; Moreira, Carlos Gustavo. A generalization of Marstrand's theorem for projections of cartesian products. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 4, pp. 833-840. doi : 10.1016/j.anihpc.2014.04.002. http://www.numdam.org/articles/10.1016/j.anihpc.2014.04.002/
[1] Local entropy averages and projections of fractal measures, Ann. Math. 175 no. 3 (2012), 1001 -1059 | MR | Zbl
, ,[2] On Hausdorff dimension of projections, Mathematika 15 (1968), 153 -155 | MR | Zbl
,[3] Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. Lond. Math. Soc. (3) 4 (1954), 257 -302 | MR | Zbl
,[4] Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn., Math. 1 (1975), 227 -244 | MR | Zbl
,[5] Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge University Press (1995) | MR | Zbl
,[6] Stable intersection of regular cantor sets with large Hausdorff dimensions, Ann. Math. 154 no. 1 (2001), 45 -96 | MR | Zbl
, ,[7] Smoothness of projections, Bernoulli convolutions, and the dimensions of exceptions, Duke Math. J. 102 no. 2 (2000), 193 -251 | MR | Zbl
, ,[8] Theory of Linear and Integer Programming, Wiley–Interscience, Chichester (1986) | MR | Zbl
,Cité par Sources :