On some large global solutions to 3-D density-dependent Navier–Stokes system with slow variable: Well-prepared data
Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 4, pp. 813-832.

In this paper, we consider the global wellposedness of 3-D incompressible inhomogeneous Navier–Stokes equations with initial data slowly varying in the vertical variable, that is, initial data of the form (1+ϵ σ a 0 (x h ,ϵx 3 ),(ϵu 0 h (x h ,ϵx 3 ),u 0 3 (x h ,ϵx 3 ))) for some σ>0 and ε being sufficiently small. We remark that initial data of this type does not satisfy the smallness conditions in [11,18] no matter how small ε is.

DOI : 10.1016/j.anihpc.2014.03.006
Classification : 35Q30, 76D03
Mots clés : Inhomogeneous Navier–Stokes equations, Littlewood–Paley theory, Wellposedness
@article{AIHPC_2015__32_4_813_0,
     author = {Paicu, Marius and Zhang, Ping},
     title = {On some large global solutions to {3-D} density-dependent {Navier{\textendash}Stokes} system with slow variable: {Well-prepared} data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {813--832},
     publisher = {Elsevier},
     volume = {32},
     number = {4},
     year = {2015},
     doi = {10.1016/j.anihpc.2014.03.006},
     mrnumber = {3390085},
     zbl = {1326.35247},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.03.006/}
}
TY  - JOUR
AU  - Paicu, Marius
AU  - Zhang, Ping
TI  - On some large global solutions to 3-D density-dependent Navier–Stokes system with slow variable: Well-prepared data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2015
SP  - 813
EP  - 832
VL  - 32
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2014.03.006/
DO  - 10.1016/j.anihpc.2014.03.006
LA  - en
ID  - AIHPC_2015__32_4_813_0
ER  - 
%0 Journal Article
%A Paicu, Marius
%A Zhang, Ping
%T On some large global solutions to 3-D density-dependent Navier–Stokes system with slow variable: Well-prepared data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2015
%P 813-832
%V 32
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2014.03.006/
%R 10.1016/j.anihpc.2014.03.006
%G en
%F AIHPC_2015__32_4_813_0
Paicu, Marius; Zhang, Ping. On some large global solutions to 3-D density-dependent Navier–Stokes system with slow variable: Well-prepared data. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 4, pp. 813-832. doi : 10.1016/j.anihpc.2014.03.006. http://www.numdam.org/articles/10.1016/j.anihpc.2014.03.006/

[1] H. Abidi, Équation de Navier–Stokes avec densité et viscosité variables dans l'espace critique, Rev. Mat. Iberoam. 23 no. 2 (2007), 537 -586 | EuDML | MR

[2] H. Abidi, M. Paicu, Existence globale pour un fluide inhomogéne, Ann. Inst. Fourier (Grenoble) 57 (2007), 883 -917 | EuDML | Numdam | MR | Zbl

[3] H. Abidi, G. Gui, P. Zhang, On the decay and stability to global solutions of the 3-D inhomogeneous Navier–Stokes equations, Commun. Pure Appl. Math. 64 (2011), 832 -881 | MR | Zbl

[4] H. Abidi, G. Gui, P. Zhang, On the wellposedness of 3-D inhomogeneous Navier–Stokes equations in the critical spaces, Arch. Ration. Mech. Anal. 204 (2012), 189 -230 | MR | Zbl

[5] H. Abidi, G. Gui, P. Zhang, Wellposedness of 3-D inhomogeneous Navier–Stokes equations with highly oscillating initial velocity field, J. Math. Pures Appl. 100 (2013), 166 -203 | MR | Zbl

[6] H. Bahouri, J.Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren Math. Wiss. vol. 343 , Springer-Verlag, Berlin, Heidelberg (2011) | MR | Zbl

[7] J.M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Super. 14 no. 4 (1981), 209 -246 | EuDML | Numdam | MR | Zbl

[8] J.Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier, Fluids with anisotropic viscosity, Modél. Math. Anal. Numér. 34 (2000), 315 -335 | EuDML | Numdam | MR | Zbl

[9] J.Y. Chemin, I. Gallagher, Large, global solutions to the Navier–Stokes equations slowly varying in one direction, Trans. Am. Math. Soc. 362 (2010), 2859 -2873 | MR | Zbl

[10] J.Y. Chemin, I. Gallagher, M. Paicu, Global regularity for some classes of large solutions to the Navier–Stokes equations, Ann. of Math. (2) 173 (2011), 983 -1012 | MR | Zbl

[11] J.Y. Chemin, M. Paicu, P. Zhang, Global large solutions to 3-D inhomogeneous Navier–Stokes system with one slow variable, J. Differ. Equ. 256 (2014), 223 -252 | MR | Zbl

[12] J.Y. Chemin, P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier–Stokes equations, Commun. Math. Phys. 272 (2007), 529 -566 | MR | Zbl

[13] R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. R. Soc. Edinb. A 133 (2003), 1311 -1334 | MR | Zbl

[14] R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids, Adv. Differ. Equ. 9 (2004), 353 -386 | MR | Zbl

[15] R. Danchin, Local theory in critical spaces for compressible viscous and heat-conducting gases, Commun. Partial Differ. Equ. 26 (2001), 1183 -1233 | MR | Zbl

[16] R. Danchin, P.B. Mucha, A Lagrangian approach for the incompressible Navier–Stokes equations with variable density, Commun. Pure Appl. Math. 65 (2012), 1458 -1480 | MR | Zbl

[17] G. Gui, J. Huang, P. Zhang, Large global solutions to the 3-D inhomogeneous Navier–Stokes equations, J. Funct. Anal. 261 (2011), 3181 -3210 | MR | Zbl

[18] J. Huang, M. Paicu, P. Zhang, Global wellposedness to incompressible inhomogeneous fluid system with bounded density and non-Lipschitz velocity, Arch. Ration. Mech. Anal. 209 (2013), 631 -682 | MR | Zbl

[19] O.A. Ladyženskaja, V.A. Solonnikov, The unique solvability of an initial–boundary value problem for viscous incompressible inhomogeneous fluids, Boundary Value Problems of Mathematical Physics, and Related Questions of the Theory of Functions, vol. 8 Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 52 (1975), 52 -109 | MR | Zbl

[20] P.L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford Lecture Ser. Math. Appl. vol. 3 , Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1996) | Zbl

[21] M. Paicu, Équation anisotrope de Navier–Stokes dans des espaces critiques, Rev. Mat. Iberoam. 21 (2005), 179 -235 | EuDML | MR

[22] M. Paicu, P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier–Stokes system in the critical spaces, Commun. Math. Phys. 307 (2011), 713 -759 | MR | Zbl

[23] M. Paicu, P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier–Stokes system, J. Funct. Anal. 262 (2012), 3556 -3584 | MR | Zbl

[24] J. Simon, Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal. 21 no. 5 (1990), 1093 -1117 | MR | Zbl

Cité par Sources :