We introduce a method to compare solutions of different equations in different domains. As a consequence, we define a new kind of rearrangement which applies to solution of fully nonlinear equations , not necessarily in divergence form, in convex domains and we obtain Talenti's type results for this kind of rearrangement.
@article{AIHPC_2015__32_4_763_0, author = {Salani, Paolo}, title = {Combination and mean width rearrangements of solutions to elliptic equations in convex sets}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {763--783}, publisher = {Elsevier}, volume = {32}, number = {4}, year = {2015}, doi = {10.1016/j.anihpc.2014.04.001}, mrnumber = {3390083}, zbl = {1321.35048}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.04.001/} }
TY - JOUR AU - Salani, Paolo TI - Combination and mean width rearrangements of solutions to elliptic equations in convex sets JO - Annales de l'I.H.P. Analyse non linéaire PY - 2015 SP - 763 EP - 783 VL - 32 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2014.04.001/ DO - 10.1016/j.anihpc.2014.04.001 LA - en ID - AIHPC_2015__32_4_763_0 ER -
%0 Journal Article %A Salani, Paolo %T Combination and mean width rearrangements of solutions to elliptic equations in convex sets %J Annales de l'I.H.P. Analyse non linéaire %D 2015 %P 763-783 %V 32 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2014.04.001/ %R 10.1016/j.anihpc.2014.04.001 %G en %F AIHPC_2015__32_4_763_0
Salani, Paolo. Combination and mean width rearrangements of solutions to elliptic equations in convex sets. Annales de l'I.H.P. Analyse non linéaire, Tome 32 (2015) no. 4, pp. 763-783. doi : 10.1016/j.anihpc.2014.04.001. http://www.numdam.org/articles/10.1016/j.anihpc.2014.04.001/
[1] Convex viscosity solutions and state constraints, J. Math. Pures Appl. 76 (1997), 265 -288 | MR | Zbl
, , ,[2] Elliptic equations with lower-order terms and reordering, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 66 (1979), 194 -200 | MR
, ,[3] Comparison results for elliptic and parabolic equations via Schwarz symmetrization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990), 37 -65 | EuDML | Numdam | MR | Zbl
, , ,[4] Comparison results for solutions of elliptic problems via symmetrization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 16 (1999), 167 -188 | EuDML | Numdam | MR | Zbl
, , , ,[5] Power concavity for solutions of nonlinear elliptic problems in convex domains, , et al. (ed.), Geometric Properties for Parabolic and Elliptic PDEs, Springer INdAM Ser. vol. 2 (2013), 35 -48 | MR | Zbl
, ,[6] Convex set functions in d-space, Period. Math. Hung. 6 (1975), 111 -136 | MR | Zbl
,[7] Capacitary inequalities of the Brunn–Minkowski type, Math. Ann. 263 (1983), 179 -184 | EuDML | MR | Zbl
,[8] On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log-concave functions, and with an application to the diffusion equation, J. Funct. Anal. 22 (1976), 366 -389 | MR | Zbl
, ,[9] Fully Nonlinear Elliptic Equations, Colloq. Publ. – Am. Math. Soc. vol. 43 , Am. Math. Soc., Providence, RI (1995) | MR | Zbl
, ,[10] Brunn–Minkowski inequalities for variational functionals and related problems, Adv. Math. 194 (2005), 105 -140 | MR | Zbl
,[11] The Brunn–Minkowski inequality for p-capacity of convex bodies, Math. Ann. 327 (2003), 459 -479 | MR | Zbl
, ,[12] Brunn–Minkowski inequalities for two functionals involving the p-Laplace operator, Appl. Anal. 85 (2006), 45 -66 | MR | Zbl
, , ,[13] User's guide to viscosity solution of second order elliptic PDE, Bull. Am. Math. Soc. 27 (1992), 1 -67 | MR
, , ,[14] Convexity of level sets for solutions to nonlinear elliptic problems in convex rings, Electron. J. Differ. Equ. 124 (2006) | EuDML | MR | Zbl
, ,[15] Remarks on a Finsler–Laplacian, Proc. Am. Math. Soc. 137 (2009), 247 -253 | MR | Zbl
, ,[16] The Brunn–Minkowski inequality, Bull. Am. Math. Soc. 39 (2002), 355 -405 | MR | Zbl
,[17] Inequalities, Cambridge University Press, Cambridge (1959) | MR | Zbl
, , ,[18] Parabolic quasi-concavity for solutions to parabolic problems in convex rings, Math. Nachr. 283 (2010), 1526 -1548 | MR | Zbl
, ,[19] Parabolic power concavity and parabolic boundary value problems, Math. Ann. 358 (2014), 1091 -1117 | MR | Zbl
, ,[20] Geometrical properties of level sets of solutions to elliptic problems, Nonlinear Functional Analysis and Its Applications, Berkeley, CA, 1983, Proc. Symp. Pure Math. vol. 45, Part 2 , Am. Math. Soc., Providence, RI (1986), 25 -36 | MR
,[21] Rearrangements and Convexity of Level Sets in P.D.E., Lect. Notes Math. vol. 1150 , Springer, Berlin (1985) | MR
,[22] A remark on N. Korevaar's maximum principle, Math. Methods Appl. Sci. 8 (1986), 93 -101 | MR | Zbl
,[23] Power concavity and boundary value problems, Indiana Univ. Math. J. 34 (1985), 687 -704 | MR | Zbl
,[24] A Beginner's Guide to the Theory of Viscosity Solutions, MSJ Memoirs vol. 13 , Mathematical Society of Japan, Tokyo (2004) | MR | Zbl
,[25] Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 32 (1983), 603 -614 | MR | Zbl
,[26] Concavity maximum principle for viscosity solutions of singular equations, Nonlinear Differ. Equ. Appl. 17 (2010), 601 -618 | MR | Zbl
,[27] Parabolic approach to nonlinear elliptic eigenvalue problems, Adv. Math. 219 (2008), 2006 -2028 | MR | Zbl
, ,[28] A Brunn–Minkowski inequality for the Hessian eigenvalue in three-dimensional convex domain, Adv. Math. 225 (2010), 1616 -1633 | MR | Zbl
, , ,[29] The convexity of solution of a class Hessian equation in bounded convex domain in , J. Funct. Anal. 255 (2008), 1713 -1723 | MR | Zbl
, ,[30] The solution of the Dirichlet problem for the equation in a convex region, Mat. Zametki 9 (1971), 89 -92 , Math. Notes 9 (1971), 52 -53 | MR | Zbl
,[31] Isoperimetric Inequalities in Mathematical Physics, Ann. Math. Stud. vol. 27 , Princeton University Press, Princeton, NJ (1951) | MR | Zbl
, ,[32] Operatori Ellittici Estremanti, Ann. Mat. Pura Appl. (4) 72 (1966), 141 -170 | MR | Zbl
,[33] Convex Analysis, Princeton Math. Ser. vol. 28 , Princeton University Press, Princeton, NJ (1970) | MR | Zbl
,[34] Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 14 (1987), 403 -421 | EuDML | Numdam | MR | Zbl
,[35] A Brunn–Minkowski inequality for the Monge–Ampère eigenvalue, Adv. Math. 194 (2005), 67 -86 | MR | Zbl
,[36] Convexity of solutions and Brunn–Minkowski inequalities for Hessian equations in , Adv. Math. 229 (2012), 1924 -1948 | MR | Zbl
,[37] Convex Bodies: The Brunn–Minkowski Theory, Encycl. Math. Appl. vol. 44 , Cambridge University Press, Cambridge (1993) | MR | Zbl
,[38] The operation of infimal convolution, Diss. Math. 352 (1996) | EuDML | MR | Zbl
,[39] Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 3 (1976), 697 -718 | EuDML | Numdam | MR | Zbl
,[40] Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl. (4) 120 (1979), 160 -184 | MR | Zbl
,[41] A symmetrization result for elliptic equations with lower-order terms, Ann. Fac. Sci. Toulouse 7 (1985), 137 -150 | EuDML | Numdam | MR | Zbl
, ,[42] On symmetrization and Hessian equation, J. Anal. Math. 25 (1989), 94 -106 | MR | Zbl
,[43] A Brunn–Minkowski inequality for a Finsler–Laplacian, Analysis (Munich) 31 (2011), 103 -115 | MR | Zbl
, ,[44] Power convexity of a class of elliptic equations involving the Hessian operator in a 3-dimensional bounded convex domain, Nonlinear Anal. 84 (2013), 29 -38 | MR | Zbl
,Cité par Sources :