Motion of a vortex filament with axial flow in the half space
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 6, pp. 1311-1335.

On considère une équation non linéaire dispersive de troisième ordre qui modélise le mouvement d'un filament tourbillonnaire immergé dans un fluide incompressible et non visqueux occupant le demi-espace en trois dimensions. Nous prouvons la solvabilité des problèmes aux limites comme une tentative pour analyser le mouvement d'une tornade.

We consider a nonlinear third order dispersive equation which models the motion of a vortex filament immersed in an incompressible and inviscid fluid occupying the three dimensional half space. We prove the unique solvability of initial–boundary value problems as an attempt to analyze the motion of a tornado.

DOI : 10.1016/j.anihpc.2013.09.004
Mots-clés : Vortex filament, Initial–boundary value problem, Nonlinear dispersive equation
@article{AIHPC_2014__31_6_1311_0,
     author = {Aiki, Masashi and Iguchi, Tatsuo},
     title = {Motion of a vortex filament with axial flow in the half space},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1311--1335},
     publisher = {Elsevier},
     volume = {31},
     number = {6},
     year = {2014},
     doi = {10.1016/j.anihpc.2013.09.004},
     mrnumber = {3280069},
     zbl = {1302.76040},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.09.004/}
}
TY  - JOUR
AU  - Aiki, Masashi
AU  - Iguchi, Tatsuo
TI  - Motion of a vortex filament with axial flow in the half space
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2014
SP  - 1311
EP  - 1335
VL  - 31
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2013.09.004/
DO  - 10.1016/j.anihpc.2013.09.004
LA  - en
ID  - AIHPC_2014__31_6_1311_0
ER  - 
%0 Journal Article
%A Aiki, Masashi
%A Iguchi, Tatsuo
%T Motion of a vortex filament with axial flow in the half space
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 1311-1335
%V 31
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2013.09.004/
%R 10.1016/j.anihpc.2013.09.004
%G en
%F AIHPC_2014__31_6_1311_0
Aiki, Masashi; Iguchi, Tatsuo. Motion of a vortex filament with axial flow in the half space. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 6, pp. 1311-1335. doi : 10.1016/j.anihpc.2013.09.004. http://www.numdam.org/articles/10.1016/j.anihpc.2013.09.004/

[1] M. Aiki, T. Iguchi, Motion of a vortex filament in the half-space, Nonlinear Anal. 75 (2012), 5180 -5185 | MR | Zbl

[2] L.S. Da Rios, Sul moto d'un liquido indefinito con un filetto vorticoso di forma qualunque, Rend. Circ. Mat. Palermo 22 no. 1 (1906), 117 -135 | JFM

[3] R.J. Arms, F.R. Hama, Localized-induction concept on a curved vortex and motion of an elliptic vortex ring, Phys. Fluids 8 no. 4 (1965), 553 -559

[4] T. Nishiyama, A. Tani, Initial and initial–boundary value problems for a vortex filament with or without axial flow, SIAM J. Math. Anal. 27 no. 4 (1996), 1015 -1023 | MR | Zbl

[5] N. Koiso, The vortex filament equation and a semilinear Schrödinger equation in a Hermitian symmetric space, Osaka J. Math. 34 no. 1 (1997), 199 -214 | MR | Zbl

[6] S. Gutiérrez, J. Rivas, L. Vega, Formation of singularities and self-similar vortex motion under the localized induction approximation, Commun. Partial Differ. Equ. 28 no. 5–6 (2003), 927 -968 | MR | Zbl

[7] V. Banica, L. Vega, On the stability of a singular vortex dynamics, Commun. Math. Phys. 286 (2009), 593 -627 | MR | Zbl

[8] V. Banica, L. Vega, Scattering for 1D cubic NLS and singular vortex dynamics, J. Eur. Math. Soc. 14 (2012), 209 -253 | EuDML | MR | Zbl

[9] S. Gutiérrez, L. Vega, On the stability of self-similar solutions of 1D cubic Schrödinger equations, Math. Ann. 356 (2013), 259 -300 | MR | Zbl

[10] E. Onodera, A third-order dispersive flow for closed curves into Kähler manifolds, J. Geom. Anal. 18 no. 3 (2008), 889 -918 | MR | Zbl

[11] E. Onodera, A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces, Commun. Partial Differ. Equ. 35 no. 6 (2010), 1130 -1144 | MR | Zbl

[12] J. Segata, On asymptotic behavior of solutions to Korteweg–de Vries type equations related to vortex filament with axial flow, J. Differ. Equ. 245 no. 2 (2008), 281 -306 | MR | Zbl

[13] N. Hayashi, E. Kaikina, Neumann problem for the Korteweg–de Vries equation, J. Differ. Equ. 225 no. 1 (2006), 168 -201 | MR | Zbl

[14] N. Hayashi, E. Kaikina, H. Ruiz Paredes, Boundary-value problem for the Korteweg–de Vries–Burgers type equation, Nonlinear Differ. Equ. Appl. 8 no. 4 (2001), 439 -463 | MR | Zbl

[15] J. Bona, S. Sun, B. Zhang, Non-homogeneous boundary value problems for the Korteweg–de Vries and the Korteweg–de Vries–Burgers equations in a quarter plane, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25 no. 6 (2008), 1145 -1185 | EuDML | Numdam | MR | Zbl

[16] M. Aiki, T. Iguchi, Solvability of an initial–boundary value problem for a second order parabolic system with third order dispersion term, SIAM J. Math. Anal. 44 no. 5 (2012), 3388 -3411 | MR | Zbl

[17] J.B. Rauch, F.J. Massey, Differentiability of solutions to hyperbolic initial–boundary value problems, Trans. Am. Math. Soc. 189 (1974), 303 -318 | MR | Zbl

Cité par Sources :