We consider the (KdV)/(KP-I) asymptotic regime for the nonlinear Schrödinger equation with a general nonlinearity. In a previous work, we have proved the convergence to the Korteweg–de Vries equation (in dimension 1) and to the Kadomtsev–Petviashvili equation (in higher dimensions) by a compactness argument. We propose a weakly transverse Boussinesq type system formally equivalent to the (KdV)/(KP-I) equation in the spirit of the work of Lannes and Saut, and then prove a comparison result with quantitative error estimates. For either suitable nonlinearities for (NLS) either a Landau–Lifshitz type equation, we derive a (mKdV)/(mKP-I) equation involving cubic nonlinearity. We then give a partial result justifying this asymptotic limit.
Mots-clés : Nonlinear Schrödinger equation, Gross–Pitaevskii equation, Landau–Lifshitz equation, (Generalized) Korteweg–de Vries equation, (Generalized) Kadomtsev–Petviashvili equation, Weakly transverse Boussinesq system
@article{AIHPC_2014__31_6_1175_0, author = {Chiron, D.}, title = {Error bounds for the {(KdV)/(KP-I)} and {(gKdV)/(gKP-I)} asymptotic regime for nonlinear {Schr\"odinger} type equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1175--1230}, publisher = {Elsevier}, volume = {31}, number = {6}, year = {2014}, doi = {10.1016/j.anihpc.2013.08.007}, mrnumber = {3280065}, zbl = {1307.35274}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.08.007/} }
TY - JOUR AU - Chiron, D. TI - Error bounds for the (KdV)/(KP-I) and (gKdV)/(gKP-I) asymptotic regime for nonlinear Schrödinger type equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 1175 EP - 1230 VL - 31 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2013.08.007/ DO - 10.1016/j.anihpc.2013.08.007 LA - en ID - AIHPC_2014__31_6_1175_0 ER -
%0 Journal Article %A Chiron, D. %T Error bounds for the (KdV)/(KP-I) and (gKdV)/(gKP-I) asymptotic regime for nonlinear Schrödinger type equations %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 1175-1230 %V 31 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2013.08.007/ %R 10.1016/j.anihpc.2013.08.007 %G en %F AIHPC_2014__31_6_1175_0
Chiron, D. Error bounds for the (KdV)/(KP-I) and (gKdV)/(gKP-I) asymptotic regime for nonlinear Schrödinger type equations. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 6, pp. 1175-1230. doi : 10.1016/j.anihpc.2013.08.007. http://www.numdam.org/articles/10.1016/j.anihpc.2013.08.007/
[1] Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence, Fluid Dyn. Res. 33 no. 5–6 (2003), 509 -544 | MR | Zbl
, , , , , , ,[2] Hamiltonian-versus-energy diagrams in soliton theory, Phys. Rev. E 59 no. 5 (1999), 6088 -6096 | MR
, , ,[3] Supercritical geometric optics for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal. 94 no. 1 (2009), 315 -347 | MR | Zbl
, ,[4] Global existence and collisions for certain configurations of nearly parallel vortex filaments, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 29 (2012), 813 -832 | Numdam | MR | Zbl
, ,[5] Stability and evolution of the quiescent and travelling solitonic bubbles, Physica D 69 no. 1–2 (1993), 114 -134 | Zbl
, ,[6] Rigorous derivation of Korteweg–de Vries-type systems from a general class of nonlinear hyperbolic systems, M2AN Math. Model. Numer. Anal. 34 no. 4 (2000), 873 -911 | EuDML | Numdam | MR | Zbl
, ,[7] The long wave limit for a general class of 2D quasilinear hyperbolic problems, Commun. Partial Differ. Equ. 27 no. 5–6 (2002), 979 -1020 | Zbl
, ,[8] On the well-posedness of the Euler–Korteweg model in several space dimensions, Indiana Univ. Math. J. 56 (2007), 1499 -1579 | MR | Zbl
, , ,[9] Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross–Pitaevskii equation, J. Phys. A, Math. Gen. 37 (2004), 11333 -11351 | MR | Zbl
, ,[10] On the linear wave regime of the Gross–Pitaevskii equation, J. Anal. Math. 110 (2010), 297 -338 | MR | Zbl
, , ,[11] On the KP-I transonic limit of two-dimensional Gross–Pitaevskii travelling waves, Dyn. Partial Differ. Equ. 5 no. 3 (2008), 241 -280 | MR | Zbl
, , ,[12] Existence and properties of travelling waves for the Gross–Pitaevskii equation, Stationary and Time Dependent Gross–Pitaevskii Equations, Contemp. Math. vol. 473 , Amer. Math. Soc., Providence, RI (2008), 55 -103 | MR | Zbl
, , ,[13] On the Korteweg–de Vries long-wave transonic approximation of the Gross–Pitaevskii equation I, Int. Math. Res. Not. 14 (2009), 2700 -2748 | MR | Zbl
, , , ,[14] On the Korteweg–de Vries long-wave approximation of the Gross–Pitaevskii equation II, Commun. Partial Differ. Equ. 35 no. 1 (2010), 113 -164 | MR | Zbl
, , , ,[15] Wave-type dynamics in ferromagnetic thin films and the motion of Néel walls, Nonlinearity 20 no. 11 (2007), 2519 -2537 | MR | Zbl
, , ,[16] Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one, Nonlinearity 25 (2012), 813 -850 | MR | Zbl
,[17] Three long-wave asymptotic regimes for the nonlinear Schrödinger Equation, , (ed.), Singularities in Nonlinear Evolution Phenomena and Applications, CRM Series , Scuola Normale Superiore, Pisa (2009), 107 -138 | MR
,[18] Rarefaction pulses for the nonlinear Schrödinger equation in the transonic limit, Commun. Math. Phys. (2013) | MR | Zbl
, ,[19] Geometric optics and boundary layers for nonlinear Schrödinger equations, Commun. Math. Phys. 288 no. 2 (2009), 503 -546 | MR | Zbl
, ,[20] The KdV/KP-I limit of the nonlinear Schrödinger equation, SIAM J. Math. Anal. 42 no. 1 (2010), 64 -96 | MR | Zbl
, ,[21] D. Chiron, C. Scheid, Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension two, preprint. | MR
[22] Justification of and long-wave correction to Davey–Stewartson systems from quadratic hyperbolic systems, Discrete Contin. Dyn. Syst. 11 no. 1 (2004), 83 -100 | MR | Zbl
, ,[23] Some singular limits for evolutionary Ginzburg–Landau equations, Asymptot. Anal. 13 (1996), 361 -372 | MR | Zbl
, ,[24] Solitary waves of generalized Kadomtsev–Petviashvili equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14 no. 2 (1997), 211 -236 | EuDML | Numdam | MR | Zbl
, ,[25] A. de Laire, Travelling waves for the Landau–Lifshitz equation: nonexistence of small energy solutions and asymptotic behaviour at infinity, preprint.
[26] Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A 44 no. 11 (2001), 1446 -1464 | MR | Zbl
, ,[27] Schrödinger group on Zhidkov spaces, Adv. Differ. Equ. 9 no. 5–6 (2004), 509 -538 | MR | Zbl
,[28] The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity, Commun. Partial Differ. Equ. 33 no. 4–6 (2008), 729 -771 | MR | Zbl
,[29] Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire, Séminaire sur les Equations aux Dérivées Partielles, Exp. No. XIII, Ecole Polytechnique, Palaiseau (1992)(1993) | EuDML | MR
,[30] P. Germain, F. Rousset, Long wave limits for Schrödinger maps, preprint.
[31] Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Am. Math. Soc. 126 no. 2 (1998), 523 -530 | MR | Zbl
,[32] On equations of KP-type, Proc. R. Soc. Edinb. A 128 (1998), 725 -743 | MR | Zbl
, ,[33] Modulational instabilities and dark solitons in a generalized nonlinear Schrödinger equation, Phys. Scr. 47 (1993), 679 -681
, , ,[34] Dark optical solitons: physics and applications, Phys. Rep. 298 (1998), 81 -197
, ,[35] Self-focusing and transverse instabilities of solitary waves, Phys. Rep. 331 (2000), 117 -195 | MR
, ,[36] Low-dimensional bose liquids: beyond the Gross–Pitaevskii approximation, Phys. Rev. Lett. 85 (2000), 1146 -1149
, , , ,[37] Topology and dynamics in ferromagnetic media, Physica D 99 no. 1 (1996), 81 -107 | MR | Zbl
, ,[38] Vortex dynamics in two-dimensional antiferromagnets, Nonlinearity 11 no. 2 (1998), 265 -290 | MR | Zbl
, ,[39] On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion 8 (1935), 153 -169 | Zbl
, ,[40] Consistency of the KP approximation, Discrete Contin. Dyn. Syst. no. suppl. (2003), 517 -525 | MR | Zbl
,[41] Secular growth estimates for hyperbolic systems, J. Differ. Equ. 190 no. 2 (2003), 466 -503 | MR | Zbl
,[42] Weakly transverse Boussinesq systems and the Kadomtsev–Petviashvili approximation, Nonlinearity 19 (2006), 2853 -2875 | MR | Zbl
, ,[43] KP lumps in ferromagnets: a three-dimensional KdV-Burgers model, J. Phys. A 35 no. 47 (2002), 10149 -10161 | MR | Zbl
,[44] Quantum kink in the continuous one-dimensional Heisenberg ferromagnet with easy plane: a picture of the antiferromagnetic magnon, J. Phys. C, Solid State Phys. 15 (1982), L1013 -L1017
, ,[45] Semitopological solitons in planar ferromagnets, Nonlinearity 12 no. 2 (1999), 285 -302 | MR | Zbl
, ,[46] Nonlinear Schrödinger equation as a model of superfluid helium, , , (ed.), Quantized Vortex Dynamics and Superfluid Turbulence, Lect. Notes Phys. vol. 571 , Springer-Verlag (2001)
, ,[47] The Cauchy problem on large time for surface waves Boussinesq systems, J. Math. Pures Appl. (9) 97 no. 6 (2012), 635 -662 | MR | Zbl
, ,[48] Asymptotics for symmetric hyperbolic systems with a large parameter, J. Differ. Equ. 75 no. 1 (1988), 1 -27 | MR | Zbl
,[49] Schrödinger maps and anti-ferromagnetic chains, Commun. Math. Phys. 262 (2006), 299 -315 | MR | Zbl
, ,[50] On the continuous limit for a system of classical spins, Commun. Math. Phys. 107 no. 3 (1986), 431 -454 | MR | Zbl
, , ,[51] Partial Differential Equations (III), Appl. Math. Sci. vol. 117 , Springer-Verlag, New York (1997) | MR
,[52] Nonlinear waves in the Pitaevskii–Gross equation, J. Low Temp. Phys. 4 no. 4 (1971), 441 -457
,[53] Local solutions to the Kadomtsev–Petviashvili equation, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 36 (1989), 193 -209 | MR | Zbl
,[54] Intermediate long wave systems for internal waves, Nonlinearity 25 no. 3 (2012), 597 -640 | MR | Zbl
,[55] Multi-scale expansion in the theory of systems integrable by the inverse scattering transform, Physica D 18 no. 1–3 (1986), 455 -463 | MR | Zbl
, ,[56] Korteweg–de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lect. Notes Math. vol. 1756 , Springer-Verlag (2001) | MR | Zbl
,Cité par Sources :