Symmetry and stability of asymptotic profiles for fast diffusion equations in annuli
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 6, pp. 1155-1173.

This paper is concerned with stability analysis of asymptotic profiles for (possibly sign-changing) solutions vanishing in finite time of the Cauchy–Dirichlet problems for fast diffusion equations in annuli. It is proved that the unique positive radial profile is not asymptotically stable, and moreover, it is unstable for the two-dimensional annulus. Furthermore, the method of stability analysis presented here will be also applied to exhibit symmetry breaking of least energy solutions.

DOI : 10.1016/j.anihpc.2013.08.006
Classification : 35K67, 35J61, 35B40, 35B35, 35B06
Mots-clés : Fast diffusion equation, Semilinear elliptic equation, Asymptotic profile, Stability analysis, Symmetry breaking
@article{AIHPC_2014__31_6_1155_0,
     author = {Akagi, Goro and Kajikiya, Ryuji},
     title = {Symmetry and stability of asymptotic profiles for fast diffusion equations in annuli},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1155--1173},
     publisher = {Elsevier},
     volume = {31},
     number = {6},
     year = {2014},
     doi = {10.1016/j.anihpc.2013.08.006},
     mrnumber = {3280064},
     zbl = {1332.35154},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.08.006/}
}
TY  - JOUR
AU  - Akagi, Goro
AU  - Kajikiya, Ryuji
TI  - Symmetry and stability of asymptotic profiles for fast diffusion equations in annuli
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2014
SP  - 1155
EP  - 1173
VL  - 31
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2013.08.006/
DO  - 10.1016/j.anihpc.2013.08.006
LA  - en
ID  - AIHPC_2014__31_6_1155_0
ER  - 
%0 Journal Article
%A Akagi, Goro
%A Kajikiya, Ryuji
%T Symmetry and stability of asymptotic profiles for fast diffusion equations in annuli
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 1155-1173
%V 31
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2013.08.006/
%R 10.1016/j.anihpc.2013.08.006
%G en
%F AIHPC_2014__31_6_1155_0
Akagi, Goro; Kajikiya, Ryuji. Symmetry and stability of asymptotic profiles for fast diffusion equations in annuli. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 6, pp. 1155-1173. doi : 10.1016/j.anihpc.2013.08.006. http://www.numdam.org/articles/10.1016/j.anihpc.2013.08.006/

[1] G. Akagi, R. Kajikiya, Stability analysis of asymptotic profiles for sign-changing solutions to fast diffusion equations, Manuscr. Math. 141 (2013), 559 -587 | MR | Zbl

[2] J.G. Berryman, C.J. Holland, Nonlinear diffusion problem arising in plasma physics, Phys. Rev. Lett. 40 (1978), 1720 -1722 | MR

[3] J.G. Berryman, C.J. Holland, Stability of the separable solution for fast diffusion, Arch. Ration. Mech. Anal. 74 (1980), 379 -388 | MR | Zbl

[4] J.G. Berryman, C.J. Holland, Asymptotic behavior of the nonlinear diffusion equation n t =(n -1 n x ) x , J. Math. Phys. 23 (1982), 983 -987 | MR | Zbl

[5] A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, J.L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Ration. Mech. Anal. 191 (2009), 347 -385 | MR | Zbl

[6] M. Bonforte, J. Dolbeault, G. Grillo, J.L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Natl. Acad. Sci. USA 107 (2010), 16459 -16464 | MR | Zbl

[7] M. Bonforte, G. Grillo, J.L. Vázquez, Behaviour near extinction for the fast diffusion equation on bounded domains, J. Math. Pures Appl. 97 (2012), 1 -38 | MR | Zbl

[8] M. Bonforte, G. Grillo, J.L. Vázquez, Fast diffusion flow on manifolds of nonpositive curvature, J. Evol. Equ. 8 (2008), 99 -128 | MR | Zbl

[9] M. Bonforte, J.L. Vázquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations, Adv. Math. 223 (2010), 529 -578 | MR | Zbl

[10] J. Byeon, Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli, J. Differ. Equ. 136 (1997), 136 -165 | MR | Zbl

[11] C.V. Coffman, A nonlinear boundary value problem with many positive solutions, J. Differ. Equ. 54 (1984), 429 -437 | MR | Zbl

[12] E.N. Dancer, On the number of positive solutions of some weakly nonlinear equations on annular regions, Math. Z. 206 (1991), 551 -562 | EuDML | MR | Zbl

[13] E. Feiresl, F. Simondon, Convergence for semilinear degenerate parabolic equations in several space dimension, J. Dyn. Differ. Equ. 12 (2000), 647 -673 | MR | Zbl

[14] B. Gidas, W.-M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys. 68 (1979), 209 -243 | MR | Zbl

[15] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford (1979) | MR | Zbl

[16] Y.C. Kwong, Asymptotic behavior of a plasma type equation with finite extinction, Arch. Ration. Mech. Anal. 104 (1988), 277 -294 | MR | Zbl

[17] Y.Y. Li, Existence of many positive solutions of semilinear elliptic equations in annulus, J. Differ. Equ. 83 (1990), 348 -367 | MR | Zbl

[18] C.S. Lin, Uniqueness of least energy solutions to a semilinear elliptic equation in 2 , Manuscr. Math. 84 (1994), 13 -19 | EuDML | MR | Zbl

[19] W.-M. Ni, Uniqueness of solutions of nonlinear Dirichlet problems, J. Differ. Equ. 50 (1983), 289 -304 | MR | Zbl

[20] P. Rosenau, Fast and superfast diffusion processes, Phys. Rev. Lett. 74 (1995), 1056 -1059

[21] G. Savaré, V. Vespri, The asymptotic profile of solutions of a class of doubly nonlinear equations, Nonlinear Anal. 22 (1994), 1553 -1565 | MR | Zbl

Cité par Sources :