We consider the feedback stabilization of a simplified 1d model for a fluid–structure interaction system. The fluid equation is the viscous Burgers equation whereas the motion of the particle is given by the Newton's laws. We stabilize this system around a stationary state by using feedbacks located at the exterior boundary of the fluid domain. With one input, we obtain a local stabilizability of the system with an exponential decay rate of order . An arbitrary order for the exponential decay rate can be proved if a unique continuation result holds true or if two inputs are used to stabilize the system. Our method is based on general arguments for stabilization of nonlinear parabolic systems combined with a change of variables to handle the fact that the fluid domains of the stationary state and of the stabilized solution are different.
Mots-clés : Feedback stabilization, Fluid–structure interaction, Viscous Burgers equation
@article{AIHPC_2014__31_2_369_0, author = {Badra, Mehdi and Takahashi, Tak\'eo}, title = {Feedback stabilization of a simplified 1d fluid{\textendash}particle system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {369--389}, publisher = {Elsevier}, volume = {31}, number = {2}, year = {2014}, doi = {10.1016/j.anihpc.2013.03.009}, mrnumber = {3181675}, zbl = {1302.74057}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.03.009/} }
TY - JOUR AU - Badra, Mehdi AU - Takahashi, Takéo TI - Feedback stabilization of a simplified 1d fluid–particle system JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 369 EP - 389 VL - 31 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2013.03.009/ DO - 10.1016/j.anihpc.2013.03.009 LA - en ID - AIHPC_2014__31_2_369_0 ER -
%0 Journal Article %A Badra, Mehdi %A Takahashi, Takéo %T Feedback stabilization of a simplified 1d fluid–particle system %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 369-389 %V 31 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2013.03.009/ %R 10.1016/j.anihpc.2013.03.009 %G en %F AIHPC_2014__31_2_369_0
Badra, Mehdi; Takahashi, Takéo. Feedback stabilization of a simplified 1d fluid–particle system. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 2, pp. 369-389. doi : 10.1016/j.anihpc.2013.03.009. http://www.numdam.org/articles/10.1016/j.anihpc.2013.03.009/
[1] Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamic controllers. Application to Navier–Stokes system, SIAM J. Control Optim. 49 no. 2 (2011), 420-463 | MR | Zbl
, ,[2] M. Badra, T. Takahashi, On Fattorini criterion for approximate controllability and stabilizability of parabolic equations, preprint. | Numdam | MR
[3] Internal exponential stabilization to a nonstationary solution for 3D Navier–Stokes equations, SIAM J. Control Optim. 49 no. 4 (2011), 1454-1478 | MR | Zbl
, , ,[4] Representation and control of infinite dimensional systems, Systems & Control: Foundations & Applications, second ed., Birkhäuser Boston Inc., Boston, MA (2007) | MR
, , , ,[5] Local null controllability of a fluid–solid interaction problem in dimension 3, J. Eur. Math. Soc. 15 no. 3 (2013), 825-856, http://dx.doi.org/10.4171/JEMS/378 | EuDML | MR | Zbl
, ,[6] Local null controllability of a two-dimensional fluid–structure interaction problem, ESAIM Control Optim. Calc. Var. 14 no. 1 (2008), 1-42 | EuDML | Numdam | MR | Zbl
, ,[7] Global controllability of nonviscous and viscous Burgers-type equations, SIAM J. Control Optim. 48 no. 3 (2009), 1567-1599 | MR | Zbl
,[8] Controllability and stabilizability of the linearized compressible Navier–Stokes system in one dimension, SIAM J. Control Optim. 50 no. 5 (2012), 2959-2987 | MR | Zbl
, , ,[9] Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 no. 5–6 (2000), 1019-1042 | Zbl
, , ,[10] Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal. 146 no. 1 (1999), 59-71 | MR | Zbl
, ,[11] On weak solutions for fluid–rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations 25 no. 7–8 (2000), 1399-1413 | MR | Zbl
, ,[12] Some control results for simplified one-dimensional models of fluid–solid interaction, Math. Models Methods Appl. Sci. 15 no. 5 (2005), 783-824 | MR | Zbl
, ,[13] Local exact controllability for the one-dimensional compressible Navier–Stokes equation, Arch. Ration. Mech. Anal. 206 no. 1 (2012), 189-238 | MR | Zbl
, , , ,[14] Null controllability of the Burgers system with distributed controls, Systems Control Lett. 56 no. 5 (2007), 366-372 | MR | Zbl
, ,[15] On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, Handbook of Mathematical Fluid Dynamics, vol. I, North-Holland, Amsterdam (2002), 653-791 | MR | Zbl
,[16] Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Springer Series in Computational Mathematics vol. 5, Springer-Verlag, Berlin (1986) | MR | Zbl
, ,[17] Existence for an unsteady fluid–structure interaction problem, M2AN Math. Model. Numer. Anal. 34 no. 3 (2000), 609-636 | EuDML | Numdam | MR | Zbl
, ,[18] Remarks on global controllability for the Burgers equation with two control forces, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 no. 6 (2007), 897-906 | EuDML | Numdam | MR | Zbl
, ,[19] Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech. 2 no. 3 (2000), 219-266 | Zbl
, , ,[20] Exact controllability of a fluid–rigid body system, J. Math. Pures Appl. (9) 87 no. 4 (2007), 408-437 | MR | Zbl
, ,[21] Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin (1995) | MR | Zbl
,[22] Single input controllability of a simplified fluid–structure interaction model, ESAIM Control Optim. Calc. Var. 19 no. 1 (2013), 20-42 | EuDML | Numdam | MR | Zbl
, , ,[23] Boundary feedback stabilization of the two dimensional Navier–Stokes equations with finite dimensional controllers, Discrete Contin. Dyn. Syst. Ser. A 27 no. 3 (2010), 1159-1187 | MR | Zbl
, ,[24] Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal. 161 no. 2 (2002), 113-147 | MR | Zbl
, , ,[25] On the slow motion of a self-propelled rigid body in a viscous incompressible fluid, J. Math. Anal. Appl. 274 no. 1 (2002), 203-227 | MR | Zbl
,[26] Large time behavior for a simplified 1D model of fluid–solid interaction, Comm. Partial Differential Equations 28 no. 9–10 (2003), 1705-1738 | MR | Zbl
, ,[27] Lack of collision in a simplified 1D model for fluid–solid interaction, Math. Models Methods Appl. Sci. 16 no. 5 (2006), 637-678 | MR | Zbl
, ,Cité par Sources :