Flowing maps to minimal surfaces: Existence and uniqueness of solutions
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 2, pp. 349-368.

Nous étudions le nouveau flot géométrique introduit dans l'article [12] de Topping et de l'auteure, qui transforme un couple formé d'une application d'une surface vers une variété riemannienne et d'une métrique riemannienne du domaine. Ce flot change des données initiales appropriées en des immersions minimales ramifiées. Nous prouvons qu'une solution faible existe tant que le flot ne contracte pas une géodésique fermée du domaine en un point. De plus, nous montrons que cette solution est unique dans la classe des solutions faibles avec énergie décroissante. Ce travail complète l'article de Topping et de l'auteure [12] où le flot est introduit et où sa convergence asymptotique est étudiée.

We study the new geometric flow that was introduced in the paper [12] of Topping and the author that evolves a pair of map and (domain) metric in such a way that it changes appropriate initial data into branched minimal immersions. In the present paper we focus on the existence theory as well as the issue of uniqueness of solutions. We establish that a (weak) solution exists for as long as the metrics remain in a bounded region of moduli space, i.e. as long as the flow does not collapse a closed geodesic in the domain manifold to a point. Furthermore, we prove that this solution is unique in the class of all weak solutions with non-increasing energy. This work complements the paper of Topping and the author [12] where the flow was introduced and its asymptotic convergence to branched minimal immersions is discussed.

@article{AIHPC_2014__31_2_349_0,
     author = {Rupflin, Melanie},
     title = {Flowing maps to minimal surfaces: {Existence} and uniqueness of solutions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {349--368},
     publisher = {Elsevier},
     volume = {31},
     number = {2},
     year = {2014},
     doi = {10.1016/j.anihpc.2013.03.008},
     mrnumber = {3181674},
     zbl = {1301.53008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.03.008/}
}
TY  - JOUR
AU  - Rupflin, Melanie
TI  - Flowing maps to minimal surfaces: Existence and uniqueness of solutions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2014
SP  - 349
EP  - 368
VL  - 31
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2013.03.008/
DO  - 10.1016/j.anihpc.2013.03.008
LA  - en
ID  - AIHPC_2014__31_2_349_0
ER  - 
%0 Journal Article
%A Rupflin, Melanie
%T Flowing maps to minimal surfaces: Existence and uniqueness of solutions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 349-368
%V 31
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2013.03.008/
%R 10.1016/j.anihpc.2013.03.008
%G en
%F AIHPC_2014__31_2_349_0
Rupflin, Melanie. Flowing maps to minimal surfaces: Existence and uniqueness of solutions. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 2, pp. 349-368. doi : 10.1016/j.anihpc.2013.03.008. http://www.numdam.org/articles/10.1016/j.anihpc.2013.03.008/

[1] W. Ding, J. Li, Q. Liu, Evolution of minimal torus in Riemannian manifolds, Invent. Math. 165 (2006), 225-242 | MR | Zbl

[2] W.Y. Ding, G. Tian, Energy identity for a class of approximate harmonic maps from surfaces, Comm. Anal. Geom. 3 no. 3–4 (1995), 543-554 | MR | Zbl

[3] J. Eells, H.J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 no. 1 (1964), 109-160 | MR | Zbl

[4] A. Freire, Uniqueness of the harmonic map flow from surfaces to general targets, Comment. Math. Helv. 70 no. 1 (1995), 310-338 | EuDML | MR | Zbl

[5] A. Freire, Uniqueness of the harmonic map flow in two dimensions, Calc. Var. 3 no. 1 (1995), 95-105 | MR | Zbl

[6] R.D. Gulliver, R. Osserman, H.L. Roydon, A theory of branched immersions of surfaces, Amer. J. Math. 95 (1973), 750-812 | MR | Zbl

[7] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Interscience Publishers (1963) | Zbl

[8] G. Lieberman, Second Order Parabolic Differential Equations, World Scientific (1996) | MR | Zbl

[9] F. Lin, C. Wang, The Analysis of Harmonic Maps and Their Heat Flows, World Scientific (2008) | MR

[10] R. Moser, Regularity for the approximated harmonic map equation and application to the heat flow for harmonic maps, Math. Z. 243 no. 2 (2003), 263-289 | MR | Zbl

[11] M. Rupflin, An improved uniqueness result for the harmonic map flow in two dimensions, Calc. Var. 33 no. 3 (2008), 329-341 | MR | Zbl

[12] M. Rupflin, P. Topping, Flowing maps to minimal surfaces, arXiv:1205.6298 (2012) | MR | Zbl

[13] M. Rupflin, P. Topping, M. Zhu, Asymptotics of the Teichmüller harmonic map flow, arXiv:1209.3783 (2012) | MR | Zbl

[14] J. Sacks, K. Uhlenbeck, Minimal immersions of closed Riemann surfaces, Trans. Amer. Math. Soc. 271 (1982), 639-652 | MR | Zbl

[15] R. Schoen, S.T. Yau, Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature, Ann. of Math. 110 (1979), 127-142 | MR | Zbl

[16] M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), 558-581 | EuDML | MR | Zbl

[17] P. Topping, Reverse bubbling and nonuniqueness in the harmonic map flow, Int. Math. Res. Not. 10 (2002), 558-581 | MR | Zbl

[18] Tromba, Teichmüller Theory in Riemannian Geometry, Lectures Math. ETH Zürich, Birkhäuser (1992) | MR | Zbl

Cité par Sources :