Let u be a type I blowing up solution of the Cauchy–Dirichlet problem for a semilinear heat equation,
@article{AIHPC_2014__31_2_231_0, author = {Fujishima, Yohei and Ishige, Kazuhiro}, title = {Blow-up set for type {I} blowing up solutions for a semilinear heat equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {231--247}, publisher = {Elsevier}, volume = {31}, number = {2}, year = {2014}, doi = {10.1016/j.anihpc.2013.03.001}, mrnumber = {3181667}, zbl = {1297.35052}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.03.001/} }
TY - JOUR AU - Fujishima, Yohei AU - Ishige, Kazuhiro TI - Blow-up set for type I blowing up solutions for a semilinear heat equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 231 EP - 247 VL - 31 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2013.03.001/ DO - 10.1016/j.anihpc.2013.03.001 LA - en ID - AIHPC_2014__31_2_231_0 ER -
%0 Journal Article %A Fujishima, Yohei %A Ishige, Kazuhiro %T Blow-up set for type I blowing up solutions for a semilinear heat equation %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 231-247 %V 31 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2013.03.001/ %R 10.1016/j.anihpc.2013.03.001 %G en %F AIHPC_2014__31_2_231_0
Fujishima, Yohei; Ishige, Kazuhiro. Blow-up set for type I blowing up solutions for a semilinear heat equation. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 2, pp. 231-247. doi : 10.1016/j.anihpc.2013.03.001. http://www.numdam.org/articles/10.1016/j.anihpc.2013.03.001/
[1] Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations 78 (1989), 160-190 | MR | Zbl
, ,[2] The blow-up problem for a semilinear parabolic equation with a potential, J. Math. Anal. Appl. 335 (2007), 418-427 | MR | Zbl
, , ,[3] Blowup stability of solutions of the nonlinear heat equation with a large life span, J. Differential Equations 223 (2006), 303-328 | MR | Zbl
,[4] Single-point blow-up on the boundary where the zero Dirichlet boundary condition is imposed, J. Eur. Math. Soc. 10 (2008), 105-132 | EuDML | MR | Zbl
, ,[5] The blow-up rate for semilinear parabolic problems on general domains, NoDEA Nonlinear Differential Equations Appl. 8 (2001), 473-480 | MR | Zbl
, ,[6] Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-447 | MR | Zbl
, ,[7] Location of the blow-up set for a superlinear heat equation with small diffusion, Differential Integral Equations 25 (2012), 759-786 | MR | Zbl
,[8] Blow-up set for a semilinear heat equation with small diffusion, J. Differential Equations 249 (2010), 1056-1077 | MR | Zbl
, ,[9] Blow-up for a semilinear parabolic equation with large diffusion on , J. Differential Equations 250 (2011), 2508-2543 | MR | Zbl
, ,[10] Blow-up for a semilinear parabolic equation with large diffusion on . II, J. Differential Equations 252 (2012), 1835-1861 | MR | Zbl
, ,[11] Y. Fujishima, K. Ishige, Blow-up set for a semilinear heat equation and pointedness of the initial data, Indiana Univ. Math. J., in press. | MR
[12] Asymptotic stability of invariant solutions of nonlinear equations of heat conduction with a source, Differential Equations 20 (1984), 461-476 | MR | Zbl
, , ,[13] V.A. Galaktionov, S.A. Posashkov, The equation . Localization, asymptotic behavior of unbounded solutions, Keldysh Inst. Appl. Math. Acad. Sci., USSR, preprint No. 97, 1985. | MR
[14] Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297-319 | MR | Zbl
, ,[15] Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 (1987), 1-40 | MR | Zbl
, ,[16] Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), 845-884 | MR | Zbl
, ,[17] Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J. 53 (2004), 483-514 | MR | Zbl
, , ,[18] Blow-up time and blow-up set of the solutions for semilinear heat equations with large diffusion, Adv. Difference Equ. 8 (2002), 1003-1024 | MR | Zbl
,[19] Blow-up behavior for semilinear heat equations with boundary conditions, Differential Integral Equations 16 (2003), 663-690 | MR | Zbl
, ,[20] Location of blow-up set for a semilinear parabolic equation with large diffusion, Math. Ann. 327 (2003), 487-511 | MR | Zbl
, ,[21] Blow-up problems for a semilinear heat equation with large diffusion, J. Differential Equations 212 (2005), 114-128 | MR | Zbl
, ,[22] Classification of type I and type II behaviors for a supercritical nonlinear heat equation, J. Funct. Anal. 256 (2009), 992-1064 | MR | Zbl
, ,[23] Threshold and generic type I behaviors for a supercritical nonlinear heat equation, J. Funct. Anal. 261 (2011), 716-748 | MR | Zbl
, ,[24] Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math. 45 (1992), 263-300 | MR | Zbl
,[25] Stability of the blow-up profile for equations of the type , Duke Math. J. 86 (1997), 143-195 | MR | Zbl
, ,[26] Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math. 51 (1998), 139-196 | MR | Zbl
, ,[27] A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann. 316 (2000), 103-137 | MR | Zbl
, ,[28] Blowup rate of solutions for a semilinear heat equation with the Dirichlet boundary condition, Asymptot. Anal. 35 (2003), 91-112 | MR | Zbl
,[29] Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: parabolic equations, Indiana Univ. Math. J. 56 (2007), 879-908 | MR | Zbl
, , ,[30] Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser Adv. Texts, Basler Lehrbücher Birkhäuser Verlag, Basel (2007) | MR | Zbl
, ,[31] Estimates on the -dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J. 42 (1993), 445-476 | MR | Zbl
,[32] Single point blow-up for a semilinear initial value problem, J. Differential Equations 55 (1984), 204-224 | MR | Zbl
,[33] Blow-up profile of a solution for a nonlinear heat equation with small diffusion, J. Math. Soc. Japan 56 (2004), 993-1005 | MR | Zbl
,[34] On the regularity of the blow-up set for semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 505-542 | EuDML | Numdam | MR | Zbl
,[35] Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation, Duke Math. J. 133 (2006), 499-525 | MR | Zbl
,Cité par Sources :