Pour tout et , , nous considérons une suite de fonctionnelles intégrales définies par
For and , , we consider a sequence of integral functionals of the form
Mots-clés : Γ-convergence, Integral functionals, Localization method, $ (\mathrm{curl},\mathrm{div})$-quasiconvexity, Convergence of minimizers, Convergence of momenta
@article{AIHPC_2014__31_1_185_0, author = {Ansini, Nadia and Dal Maso, Gianni and Zeppieri, Caterina Ida}, title = {New results on {\protect\emph{\ensuremath{\Gamma}}-limits} of integral functionals}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {185--202}, publisher = {Elsevier}, volume = {31}, number = {1}, year = {2014}, doi = {10.1016/j.anihpc.2013.02.005}, mrnumber = {3165285}, zbl = {1290.49024}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.02.005/} }
TY - JOUR AU - Ansini, Nadia AU - Dal Maso, Gianni AU - Zeppieri, Caterina Ida TI - New results on Γ-limits of integral functionals JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 185 EP - 202 VL - 31 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2013.02.005/ DO - 10.1016/j.anihpc.2013.02.005 LA - en ID - AIHPC_2014__31_1_185_0 ER -
%0 Journal Article %A Ansini, Nadia %A Dal Maso, Gianni %A Zeppieri, Caterina Ida %T New results on Γ-limits of integral functionals %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 185-202 %V 31 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2013.02.005/ %R 10.1016/j.anihpc.2013.02.005 %G en %F AIHPC_2014__31_1_185_0
Ansini, Nadia; Dal Maso, Gianni; Zeppieri, Caterina Ida. New results on Γ-limits of integral functionals. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 1, pp. 185-202. doi : 10.1016/j.anihpc.2013.02.005. http://www.numdam.org/articles/10.1016/j.anihpc.2013.02.005/
[1] Γ-convergence and H-convergence of linear elliptic operators, J. Math. Pures Appl. 99 (2013), 321-329 | MR | Zbl
, , ,[2] Γ-convergence of functionals on divergence-free fields, ESAIM Control Optim. Calc. Var. 13 (2007), 809-828 | EuDML | Numdam | MR | Zbl
, ,[3] Asymptotic analysis of non-symmetric linear operators via Γ-convergence, SIAM J. Math. Anal. 44 (2012), 1617-1635 | MR | Zbl
, ,[4] Quasistatic evolution of a brittle thin film, Calc. Var. Partial Differential Equations 26 (2006), 69-118 | MR | Zbl
,[5] A version of the fundamental theorem for Young measures, , , (ed.), PDE's and Continuum Models of Phase Transitions, Lecture Notes in Phys. vol. 344, Springer-Verlag, Berlin (1989), 207-215
,[6] Regularity of quasiconvex envelopes, Calc. Var. Partial Differential Equations 11 (2000), 333-359 | MR | Zbl
, , ,[7] Intégrands normales et mesures paramétrées en calcul des variations, Bull. Soc. Math. France 101 (1973), 129-184 | EuDML | Numdam | MR | Zbl
, ,[8] Homogenization of Multiple Integrals, Oxford University Press, New York (1998) | MR | Zbl
, ,[9] -quasiconvexity: relaxation and homogenization, ESAIM Control Optim. Calc. Var. 5 (2000), 539-577 | EuDML | Numdam | MR | Zbl
, , ,[10] Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli, J. Math. Phys. 35 (1994), 127-145 | MR | Zbl
, ,[11] Direct Methods in the Calculus of Variations, Appl. Math. Sci. vol. 78, Springer, New York (2008) | MR | Zbl
,[12] An Introduction to Γ-Convergence, Birkhäuser, Boston (1993) | MR | Zbl
,[13] Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal. 176 (2005), 165-225 | MR | Zbl
, , ,[14] -quasiconvexity, lower semicontinuity, and Young measures, SIAM J. Math. Anal. 30 (1999), 1355-1390 | MR | Zbl
, ,[15] A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications, Arch. Ration. Mech. Anal. 180 (2006), 399-447 | MR | Zbl
, ,[16] On characterizing the set of possible effective tensors of composites: the variational method and the translation method, Comm. Pure Appl. Math. 43 (1990), 63-125 | MR | Zbl
,[17] Compacité par compensation: condition necessaire et suffisante de continuité faible sous une hypothése de rang constant, Ann. Sc. Norm. Super. Pisa Cl. Sci. 8 (1981), 68-102 | EuDML | Numdam | MR | Zbl
,[18] Compensated compactness and applications to partial differential equations, (ed.), Nonlinerar Analysis and Mechanics: Heriot–Watt Symposium, Pitman Res. Notes Math. Ser. vol. 39, Longman, Harlow (1979), 136-212 | MR | Zbl
,Cité par Sources :