Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 1, pp. 155-167.

Existence and bifurcation of positive solutions to a Kirchhoff type equation

{-(a+b Ω|u| 2 )Δu=νf(x,u),inΩ,u=0,onΩ
are considered by using topological degree argument and variational method. Here f is a continuous function which is asymptotically linear at zero and is asymptotically 3-linear at infinity. The new results fill in a gap of recent research about the Kirchhoff type equation in bounded domain, and in our results the nonlinearity may be resonant near zero or infinity.

DOI : 10.1016/j.anihpc.2013.01.006
Mots-clés : Kirchhoff type equation, Topological degree, Variational method, Monotone operator, Bifurcation
@article{AIHPC_2014__31_1_155_0,
     author = {Liang, Zhanping and Li, Fuyi and Shi, Junping},
     title = {Positive solutions to {Kirchhoff} type equations with nonlinearity having prescribed asymptotic behavior},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {155--167},
     publisher = {Elsevier},
     volume = {31},
     number = {1},
     year = {2014},
     doi = {10.1016/j.anihpc.2013.01.006},
     mrnumber = {3165283},
     zbl = {1288.35456},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.01.006/}
}
TY  - JOUR
AU  - Liang, Zhanping
AU  - Li, Fuyi
AU  - Shi, Junping
TI  - Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2014
SP  - 155
EP  - 167
VL  - 31
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2013.01.006/
DO  - 10.1016/j.anihpc.2013.01.006
LA  - en
ID  - AIHPC_2014__31_1_155_0
ER  - 
%0 Journal Article
%A Liang, Zhanping
%A Li, Fuyi
%A Shi, Junping
%T Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 155-167
%V 31
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2013.01.006/
%R 10.1016/j.anihpc.2013.01.006
%G en
%F AIHPC_2014__31_1_155_0
Liang, Zhanping; Li, Fuyi; Shi, Junping. Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 1, pp. 155-167. doi : 10.1016/j.anihpc.2013.01.006. http://www.numdam.org/articles/10.1016/j.anihpc.2013.01.006/

[1] C.O. Alves, F.J.S.A. Corrêa, T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 no. 1 (2005), 85-93 | MR | Zbl

[2] Herbert Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 no. 4 (1976), 620-709 | MR | Zbl

[3] Ching-Yu Chen, Yueh-Cheng Kuo, Tsung-Fang Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations 250 no. 4 (2011), 1876-1908 | MR | Zbl

[4] Bitao Cheng, Xian Wu, Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal. 71 no. 10 (2009), 4883-4892 | MR | Zbl

[5] Francesca Colasuonno, Patrizia Pucci, Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal. 74 no. 17 (2011), 5962-5974 | MR | Zbl

[6] P. D'Ancona, S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108 no. 2 (1992), 247-262 | EuDML | MR | Zbl

[7] Piero D'Ancona, Yoshihiro Shibata, On global solvability of nonlinear viscoelastic equations in the analytic category, Math. Methods Appl. Sci. 17 no. 6 (1994), 477-486 | MR | Zbl

[8] Klaus Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin (1985) | MR | Zbl

[9] B. Gidas, Wei Ming Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 no. 3 (1979), 209-243 | MR | Zbl

[10] Xiaoming He, Wenming Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 no. 3 (2009), 1407-1414 | MR | Zbl

[11] Xiaoming He, Wenming Zou, Multiplicity of solutions for a class of Kirchhoff type problems, Acta Math. Appl. Sin. Engl. Ser. 26 no. 3 (2010), 387-394 | MR | Zbl

[12] Yisheng Huang, Positive solutions of quasilinear elliptic equations, Topol. Methods Nonlinear Anal. 12 no. 1 (1998), 91-107 | MR | Zbl

[13] Yisheng Huang, Huan-Song Zhou, Positive solution for -Δ p u=f(x,u) with f(x,u) growing as u p-1 at infinity, Appl. Math. Lett. 17 no. 8 (2004), 881-887 | MR | Zbl

[14] Louis Jeanjean, Local conditions insuring bifurcation from the continuous spectrum, Math. Z. 232 no. 4 (1999), 651-664 | MR | Zbl

[15] T.F. Ma, J.E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett. 16 no. 2 (2003), 243-248 | MR | Zbl

[16] Anmin Mao, Zhitao Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 no. 3 (2009), 1275-1287 | MR | Zbl

[17] Kanishka Perera, Zhitao Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 no. 1 (2006), 246-255 | MR | Zbl

[18] Paul H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. vol. 65, Amer. Math. Soc., Washington, DC (1986) | MR | Zbl

[19] Michael Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin (1990) | MR | Zbl

[20] Ji-Jiang Sun, Chun-Lei Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal. 74 no. 4 (2011), 1212-1222 | MR | Zbl

[21] Yang Yang, Jihui Zhang, Nontrivial solutions of a class of nonlocal problems via local linking theory, Appl. Math. Lett. 23 no. 4 (2010), 377-380 | MR | Zbl

[22] Eberhard Zeidler, Nonlinear functional analysis and its applications, II/B, Nonlinear Monotone Operators, Springer-Verlag, New York (1990) | MR | Zbl

[23] Zhitao Zhang, Kanishka Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl. 317 no. 2 (2006), 456-463 | MR | Zbl

Cité par Sources :