In this paper, we give a sharp lower bound for the first (nonzero) Neumann eigenvalue of Finsler-Laplacian in Finsler manifolds in terms of diameter, dimension, weighted Ricci curvature.
Mots-clés : Finsler-Laplacian, First eigenvalue, Weighted Ricci curvature, Poincaré inequality
@article{AIHPC_2013__30_6_983_0, author = {Wang, Guofang and Xia, Chao}, title = {A sharp lower bound for the first eigenvalue on {Finsler} manifolds}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {983--996}, publisher = {Elsevier}, volume = {30}, number = {6}, year = {2013}, doi = {10.1016/j.anihpc.2012.12.008}, mrnumber = {3132412}, zbl = {1286.35179}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.008/} }
TY - JOUR AU - Wang, Guofang AU - Xia, Chao TI - A sharp lower bound for the first eigenvalue on Finsler manifolds JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 983 EP - 996 VL - 30 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.008/ DO - 10.1016/j.anihpc.2012.12.008 LA - en ID - AIHPC_2013__30_6_983_0 ER -
%0 Journal Article %A Wang, Guofang %A Xia, Chao %T A sharp lower bound for the first eigenvalue on Finsler manifolds %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 983-996 %V 30 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.008/ %R 10.1016/j.anihpc.2012.12.008 %G en %F AIHPC_2013__30_6_983_0
Wang, Guofang; Xia, Chao. A sharp lower bound for the first eigenvalue on Finsler manifolds. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 6, pp. 983-996. doi : 10.1016/j.anihpc.2012.12.008. http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.008/
[1] An Introduction to Riemann–Finsler Geometry, Springer-Verlag, New York (2000) | MR | Zbl
, , ,[2] Convex domains of Finsler and Riemannian manifolds, Calc. Var. Partial Differential Equations 40 no. 3–4 (2011), 335-356 | MR | Zbl
, , , ,[3] Some new results on eigenvectors via dimension, diameter, and Ricci curvature, Adv. Math. 155 no. 1 (2000), 98-153 | MR | Zbl
, ,[4] Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys. 54 (2003), 771-783 | MR | Zbl
, , ,[5] General formula for lower bound of the first eigenvalue on Riemannian manifolds, Sci. China Ser. A 40 no. 4 (1997), 384-394 | MR | Zbl
, ,[6] Eigenvalues and eigenfunctions of metric measure manifolds, Proc. London Math. Soc. 82 (2001), 725-746 | MR | Zbl
, ,[7] A remark on Zhong–Yangʼs eigenvalue estimate, Int. Math. Res. Not. no. 18 (2007) | MR
, ,[8] On the spectral gap for compact manifolds, J. Differential Geom. 36 no. 2 (1992), 315-330 | MR | Zbl
,[9] A lower bound for the first eigenvalue of the Laplacian on a compact manifold, Indiana Math. J. 28 (1979), 1013-1019 | MR | Zbl
,[10] Estimates of eigenvalues of a compact Riemannian manifold, Geometry of the Laplace Operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii (1979), Proc. Sympos. Pure Math. vol. XXXVI, Amer. Math. Soc., Providence, RI (1980)
, ,[11] Geometrie des groupes de transforamtions, Travaux et Recherches Mathemtiques vol. III, Dunod, Paris (1958)
,[12] Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009), 903-991 | MR | Zbl
, ,[13] Certain conditions for a Riemannian manifold to be a sphere, J. Math. Soc. Japan. 14 (1962), 333-340 | MR | Zbl
,[14] Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009), 211-249 | MR | Zbl
,[15] Heat flow on Finsler manifolds, Comm. Pure Appl. Math. 62 (2009), 1386-1433 | MR | Zbl
, ,[16] Bochner–Weitzenböck formula and Li–Yau estimates on Finsler manifolds, arXiv:1104.5276 | MR | Zbl
, ,[17] An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal. 5 (1960), 286-292 | MR | Zbl
, ,[18] Z. Qian, H.-C. Zhang, X.-P. Zhu, Sharp Spectral Gap and Li–Yauʼs Estimate on Alexandrov Spaces, Math. Z., http://dx.doi.org/10.1007/s00209-012-1049-1.
[19] Lectures on Finsler Geometry, World Scientific Publishing Co., Singapore (2001) | MR | Zbl
,[20] On the geometry of metric measure spaces. I, Acta Math. 196 (2006), 65-131 | MR | Zbl
,[21] An optimal anisotropic Poincaré inequality for convex domains, Pac. J. Math. 258 (2012), 305-326 | MR | Zbl
, ,[22] Comparison theorems in Finsler geometry and their applications, Math. Ann. 337 (2007), 177-196 | MR | Zbl
, ,[23] Optimal Transport, Old and New, Springer-Verlag (2009) | MR | Zbl
,[24] On the estimate of the first eigenvalue of a compact Riemannian manifold, Sci. Sinica Ser. A 27 no. 12 (1984), 1265-1273 | MR | Zbl
, ,Cité par Sources :