We study the limit of global minimizers for a p-Ginzburg–Landau-type energy The minimization is carried over maps on that vanish at the origin and are of degree one at infinity. We prove locally uniform convergence of the minimizers on and obtain an explicit formula for the limit on . Some generalizations to dimension are presented as well.
@article{AIHPC_2013__30_6_1159_0, author = {Almog, Yaniv and Berlyand, Leonid and Golovaty, Dmitry and Shafrir, Itai}, title = {On the limit $ p\to \infty $ of global minimizers for a {\protect\emph{p}-Ginzburg{\textendash}Landau-type} energy}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1159--1174}, publisher = {Elsevier}, volume = {30}, number = {6}, year = {2013}, doi = {10.1016/j.anihpc.2012.12.013}, mrnumber = {3132420}, zbl = {1288.35441}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.013/} }
TY - JOUR AU - Almog, Yaniv AU - Berlyand, Leonid AU - Golovaty, Dmitry AU - Shafrir, Itai TI - On the limit $ p\to \infty $ of global minimizers for a p-Ginzburg–Landau-type energy JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 1159 EP - 1174 VL - 30 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.013/ DO - 10.1016/j.anihpc.2012.12.013 LA - en ID - AIHPC_2013__30_6_1159_0 ER -
%0 Journal Article %A Almog, Yaniv %A Berlyand, Leonid %A Golovaty, Dmitry %A Shafrir, Itai %T On the limit $ p\to \infty $ of global minimizers for a p-Ginzburg–Landau-type energy %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 1159-1174 %V 30 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.013/ %R 10.1016/j.anihpc.2012.12.013 %G en %F AIHPC_2013__30_6_1159_0
Almog, Yaniv; Berlyand, Leonid; Golovaty, Dmitry; Shafrir, Itai. On the limit $ p\to \infty $ of global minimizers for a p-Ginzburg–Landau-type energy. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 6, pp. 1159-1174. doi : 10.1016/j.anihpc.2012.12.013. http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.013/
[1] Global minimizers for a p-Ginzburg–Landau-type energy in , J. Funct. Anal. 256 (2009), 2268-2290 | MR | Zbl
, , , ,[2] Radially symmetric minimizers for a p-Ginzburg–Landau type energy in , Calc. Var. Partial Differential Equations 42 (2011), 517-546 | MR | Zbl
, , , ,[3] Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge vol. 30, Springer-Verlag, New York (1965) | MR | Zbl
, ,[4] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer (2011) | MR | Zbl
,[5] Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin (2001) | Zbl
, ,[6] Geometric Function Theory and Non-linear Analysis, Oxford Mathematical Monographs, The Clarendon Press/Oxford University Press, New York (2001) | MR | Zbl
, ,[7] Les minimiseurs locaux pour lʼéquation de Ginzburg–Landau sont à symétrie radiale, C. R. Acad. Sci. Paris, Sér. I Math. 323 (1996), 593-598 | MR | Zbl
,[8] Locally minimising solutions of in , Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 349-358 | MR | Zbl
,Cité par Sources :