We study the existence of sign-changing solutions with multiple bubbles to the slightly subcritical problem
Mots-clés : Slightly subcritical problem, Sign-changing solutions, Finite-dimensional reduction, Max–min argument
@article{AIHPC_2013__30_6_1027_0, author = {Bartsch, Thomas and D'Aprile, Teresa and Pistoia, Angela}, title = {Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1027--1047}, publisher = {Elsevier}, volume = {30}, number = {6}, year = {2013}, doi = {10.1016/j.anihpc.2013.01.001}, mrnumber = {3132415}, zbl = {1288.35212}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.01.001/} }
TY - JOUR AU - Bartsch, Thomas AU - DʼAprile, Teresa AU - Pistoia, Angela TI - Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 1027 EP - 1047 VL - 30 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2013.01.001/ DO - 10.1016/j.anihpc.2013.01.001 LA - en ID - AIHPC_2013__30_6_1027_0 ER -
%0 Journal Article %A Bartsch, Thomas %A DʼAprile, Teresa %A Pistoia, Angela %T Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 1027-1047 %V 30 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2013.01.001/ %R 10.1016/j.anihpc.2013.01.001 %G en %F AIHPC_2013__30_6_1027_0
Bartsch, Thomas; DʼAprile, Teresa; Pistoia, Angela. Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 6, pp. 1027-1047. doi : 10.1016/j.anihpc.2013.01.001. http://www.numdam.org/articles/10.1016/j.anihpc.2013.01.001/
[1] Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom. 11 (1976), 573-598 | MR | Zbl
,[2] On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294 | MR | Zbl
, ,[3] On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995), 67-93 | MR | Zbl
, , ,[4] Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal. 186 (2001), 117-152 | MR | Zbl
,[5] On the profile of sign-changing solutions of an almost critical problem in the ball, arXiv:1208.5903 | MR
, , ,[6] On the existence and the profile of nodal solutions of elliptic equations involving critical growth, Calc. Var. Partial Differential Equations 26 (2006), 265-282 | MR | Zbl
, , ,[7] A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear Anal. 22 (2003), 1-14 | MR | Zbl
, ,[8] Classification of low energy sign-changing solutions of an almost critical problem, J. Funct. Anal. 50 (2007), 347-373 | MR | Zbl
, , ,[9] Asymptotics for elliptic equations involving critical growth, Partial Differential Equations and the Calculus of Variations, vol. I, Progr. Nonlinear Differential Equations Appl. vol. 1, Birkhäuser, Boston, MA (1989), 149-192 | MR
, ,[10] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297 | MR | Zbl
, , ,[11] On the strict concavity of the harmonic radius in dimension , J. Math. Pures Appl. 81 (2002), 223-240 | MR | Zbl
, ,[12] Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. Lond. Math. Soc. 35 (2003), 513-521 | MR | Zbl
, , ,[13] Multi-peak solutions for super-critical elliptic problems in domains with small holes, J. Differential Equations 182 (2002), 511-540 | MR | Zbl
, , ,[14] Two-bubble solutions in the super-critical Bahri–Coronʼs problem, Calc. Var. Partial Differential Equations 16 (2003), 113-145 | MR | Zbl
, , ,[15] Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, J. Funct. Anal. 259 (2010), 904-917 | MR | Zbl
, ,[16] Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots, Manuscripta Math. 94 (1997), 337-346 | EuDML | MR | Zbl
, ,[17] Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré, Anal. Non Linéaire 8 (1991), 159-174 | EuDML | Numdam | MR | Zbl
,[18] Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597 | MR | Zbl
, ,[19] Tower of bubbles for almost critical problems in general domains, J. Math. Pures Appl. 93 (2010), 1-40 | MR | Zbl
, ,[20] Multiplicity of solutions to the supercritical Bahri–Coronʼs problem in pierced domains, Adv. Differential Equations 11 (2006), 647-666 | MR | Zbl
, ,[21] On the eigenfunctions of the equation , Soviet Math. Dokl. 6 (1965), 1408-1411 | MR | Zbl
,[22] Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations 4 (1991), 1155-1167 | MR | Zbl
,[23] The role of the Greenʼs function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), 1-52 | MR | Zbl
,[24] Proof of two conjectures of H. Brezis and L.A. Peletier, Manuscripta Math. 65 (1989), 19-37 | EuDML | MR | Zbl
,[25] Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem, Ann. Inst. H. Poincaré, Anal. Non Linéaire 24 (2007), 325-340 | EuDML | Numdam | MR | Zbl
, ,[26] Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372 | MR | Zbl
,Cité par Sources :