Following Bernicot (2012) [7], we introduce a notion of paraproducts associated to a semigroup. We do not use Fourier transform arguments and the background manifold is doubling, endowed with a sub-Laplacian structure. Our main result is a paralinearization theorem in a non-Euclidean framework, with an application to the propagation of regularity for some nonlinear PDEs.
Mots clés : Paralinearization, Sub-Laplacian operator, Riemannian manifold
@article{AIHPC_2013__30_5_935_0, author = {Bernicot, Fr\'ed\'eric and Sire, Yannick}, title = {Propagation of low regularity for solutions of nonlinear {PDEs} on a {Riemannian} manifold with a {sub-Laplacian} structure}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {935--958}, publisher = {Elsevier}, volume = {30}, number = {5}, year = {2013}, doi = {10.1016/j.anihpc.2012.12.005}, zbl = {06295447}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.005/} }
TY - JOUR AU - Bernicot, Frédéric AU - Sire, Yannick TI - Propagation of low regularity for solutions of nonlinear PDEs on a Riemannian manifold with a sub-Laplacian structure JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 935 EP - 958 VL - 30 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.005/ DO - 10.1016/j.anihpc.2012.12.005 LA - en ID - AIHPC_2013__30_5_935_0 ER -
%0 Journal Article %A Bernicot, Frédéric %A Sire, Yannick %T Propagation of low regularity for solutions of nonlinear PDEs on a Riemannian manifold with a sub-Laplacian structure %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 935-958 %V 30 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.005/ %R 10.1016/j.anihpc.2012.12.005 %G en %F AIHPC_2013__30_5_935_0
Bernicot, Frédéric; Sire, Yannick. Propagation of low regularity for solutions of nonlinear PDEs on a Riemannian manifold with a sub-Laplacian structure. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 5, pp. 935-958. doi : 10.1016/j.anihpc.2012.12.005. http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.005/
[1] Special functions of bounded variation in doubling metric measure spaces, Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi, Quad. Mat. vol. 14, Dept. Math., Seconda Univ. Napoli, Caserta (2004), 1-45 | Zbl
, , ,[2] On necessary and sufficient conditions for estimates of Riesz transforms associated to elliptic operators on and related estimates, Mem. Amer. Math. Soc. 186 (2007), 871
,[3] Algebra properties for Sobolev spaces – Applications to semilinear PDEʼs on manifolds, J. Anal. Math. 118 (2012), 509-544, arXiv:1107.3826 | Zbl
, , ,[4] Phase Space Analysis and Pseudodifferential Calculus on the Heisenberg Group, Astérisque vol. 342, Société Math. de France (2012) | Zbl
, , ,[5] Diffusions hypercontractives, Lecture Notes in Math. vol. 1123 (1985) | Numdam | Zbl
, ,[6] New Abstract Hardy Spaces, J. Funct. Anal. 255 (2008), 1761-1796 | Zbl
, ,[7] A -Theorem in relation to a semigroup of operators and applications to new paraproducts, Trans. Amer. Math. Soc. 364 (2012), 6071-6108, arXiv:1005.5140 | Zbl
,[8] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Scient. E.N.S. 14 (1981), 209-246 | EuDML | Numdam | Zbl
,[9] Calderón reproducing formulas and new Besov spaces associated with operators, Adv. Math. 229 no. 4 (2012), 2449-2502 | Zbl
, , ,[10] Au-delà des opérateurs pseudo-diffeŕentiels, Astérisque vol. 57, Société Math. de France (1978) | Numdam | Zbl
, ,[11] Analyse harmonique sur certains espaces homogènes, Lecture Notes in Math. vol. 242 (1971) | Zbl
, ,[12] Sobolev algebras on Lie groups and Riemannian manifolds, Amer. J. Math. 123 (2001), 283-342 | Zbl
, , ,[13] Analysis on Lie groups with polynomial growth, Progress in Mathematics vol. 214, Birkäuser Boston Inc., Boston, MA (2003) | Zbl
, , ,[14] Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 no. 4 (2005), 943-973 | Zbl
, ,[15] New function spaces of BMO type, the John–Nirenberg inequality, interplation and applications, Commun. Pure Appl. Math. 58 no. 10 (2005), 1375-1420 | Zbl
, ,[16] Fundamental solutions for second order subelliptic operators, Ann. of Math. 124 no. 2 (1986), 247-272 | Zbl
, ,[17] D. Frey, Paraproducts via -functional calculus and a -Theorem for non-integral operators, Phd thesis, available at http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/1687378.
[18] Paraproducts via -functional calculus, arXiv:1107.4348 | Zbl
,[19] Littlewood–Paley decompositions and Besov spaces on Lie groups of polynomial growth, Math. Nachrichten 279 (2006), 1028-1040 | Zbl
, , ,[20] Besov algebras on Lie groups of polynomial growth and related results, arXiv:1010.0154
, ,[21] Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973), 333-379 | EuDML | Numdam | Zbl
,[22] Hypoelliptic differential operators, Ann. de lʼInst. Four. 11 (1961), 477-492 | EuDML | Numdam | Zbl
,[23] Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171 | Zbl
,[24] On the energy critical Schrödinger equation in 3D non-trapping domains, Ann. I. H. Poincaré - A.N. 27 (2010), 1153-1177 | Numdam | Zbl
, ,[25] Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), 835-854 | Zbl
, ,[26] Some generalizations of the Strichartz–Brenner inequality, Leningrad Math. J. 1 (1990), 693-726 | Zbl
,[27] A. McInstosh, Operators which have an -calculus, in: Miniconference on Operator Theory and Partial Differential Equations, Proc. Centre Math. Analysis, ANU, Canberra, vol. 14, 1986, pp. 210–231.
[28] Remarques sur un théorème de J.M. Bony, Suppl. Rendiconti del Circ. Mate. di Palermo 1 (1980), 8-17
,[29] Balls and metrics defined by vector fields I: Basic properties, Acta Math. 155 (1985), 103-147 | Zbl
, , ,[30] Elliptic Operators and Lie Groups, Oxford Univerisity Press (1991)
,[31] Fundamental solutions and geometry of sum of squares of vector fields, Inv. Math. 78 (1984), 143-160 | EuDML | Zbl
,[32] Spaces of Besov–Hardy–Sobolev type on complete Riemannian manifolds, Ark. Mat. 24 (1986), 299-337 | Zbl
,[33] Analysis and nilpotent groups, J. Funct. Anal. 66 (1986), 406-431 | Zbl
,Cité par Sources :