Nous étudions lʼexistence dʼune classe particulière de solutions dʼondes pour une équation non linéaire parabolique dégénérée en présence dʼun écoulement cisaillé. Sous certaines hypothèses nous prouvons que ces solutions existent au moins pour des vitesses de propagation , où est une vitesse critique calculée explicitement en fonction de lʼécoulement mais peut-être pas optimale. Nous prouvons également quʼune hypersurface de frontière libre sépare une zone dʼune zone et que, sous une hypothèse supplémentaire de non-dégénérescence, cette frontière peut être globalement paramétrée comme un graphe lipschitzien. Nous nous intéressons à des solutions qui, à lʼinfini dans la direction de propagation, sont planes et linéaires avec pente égale à la vitesse.
We study the existence of particular traveling wave solutions of a nonlinear parabolic degenerate diffusion equation with a shear flow. Under some assumptions we prove that such solutions exist at least for propagation speeds , where is explicitly computed but may not be optimal. We also prove that a free boundary hypersurface separates a region where and a region where , and that this free boundary can be globally parametrized as a Lipschitz continuous graph under some additional non-degeneracy hypothesis; we investigate solutions which are, in the region , planar and linear at infinity in the propagation direction, with slope equal to the propagation speed.
@article{AIHPC_2013__30_4_705_0, author = {Monsaingeon, L. and Novikov, A. and Roquejoffre, J.-M.}, title = {Traveling wave solutions of advection{\textendash}diffusion equations with nonlinear diffusion}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {705--735}, publisher = {Elsevier}, volume = {30}, number = {4}, year = {2013}, doi = {10.1016/j.anihpc.2012.11.003}, mrnumber = {3082481}, zbl = {1288.35169}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.11.003/} }
TY - JOUR AU - Monsaingeon, L. AU - Novikov, A. AU - Roquejoffre, J.-M. TI - Traveling wave solutions of advection–diffusion equations with nonlinear diffusion JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 705 EP - 735 VL - 30 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.11.003/ DO - 10.1016/j.anihpc.2012.11.003 LA - en ID - AIHPC_2013__30_4_705_0 ER -
%0 Journal Article %A Monsaingeon, L. %A Novikov, A. %A Roquejoffre, J.-M. %T Traveling wave solutions of advection–diffusion equations with nonlinear diffusion %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 705-735 %V 30 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.11.003/ %R 10.1016/j.anihpc.2012.11.003 %G en %F AIHPC_2013__30_4_705_0
Monsaingeon, L.; Novikov, A.; Roquejoffre, J.-M. Traveling wave solutions of advection–diffusion equations with nonlinear diffusion. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 4, pp. 705-735. doi : 10.1016/j.anihpc.2012.11.003. http://www.numdam.org/articles/10.1016/j.anihpc.2012.11.003/
[1] Régularité des solutions de lʼéquation des milieux poreux dans , C. R. Acad. Sci. Paris Sér. A–B 288 (1979), A103-A105 | MR | Zbl
, ,[2] The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc. 280 (1983), 351-366 | MR | Zbl
, ,[3] Solutions of the porous medium equation in under optimal conditions on initial values, Indiana Univ. Math. J. 33 (1984), 51-87 | MR | Zbl
, , ,[4] Uniform estimates for regularization of free boundary problems, Analysis and Partial Differential Equations, Lect. Notes Pure Appl. Math. vol. 122, Dekker, New York (1990), 567-619 | Zbl
, , ,[5] On the method of moving planes and the sliding method, Bull. Braz. Math. Soc. 22 (1991), 1-37 | MR | Zbl
, ,[6] Viscosity solutions for the porous medium equation, Differential Equations, La Pietra, Florence, 1996, Proc. Sympos. Pure Math. vol. 65, Amer. Math. Soc., Providence, RI (1999), 13-26 | MR | Zbl
, ,[7] Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ. vol. 43, Amer. Math. Soc., Providence, RI (1995) | MR | Zbl
, ,[8] Regularity of the free boundary of a gas flow in an n-dimensional porous medium, Indiana Univ. Math. J. 29 (1980), 361-391 | MR | Zbl
, ,[9] Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation, Indiana Univ. Math. J. 36 (1987), 373-401 | MR | Zbl
, , ,[10] regularity of the free boundary for the N-dimensional porous media equation, Comm. Pure Appl. Math. 43 (1990), 885-902 | MR | Zbl
, ,[11] Sur le problème de Dirichlet, quasilinéaire, dʼordre 2, C. R. Acad. Sci. Paris Sér. A–B 274 (1972), A81-A85 | MR
, ,[12] Quenching of flames by fluid advection, Comm. Pure Appl. Math. 54 (2001), 1320-1342 | MR | Zbl
, , ,[13] Userʼs guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1-67
, , ,[14] Elliptic Partial Differential Equations of Second Order, Classics Math., Springer-Verlag, Berlin (2001) | MR | Zbl
, ,[15] Degenerate diffusion with a drift potential: a viscosity solutions approach, Discrete Contin. Dyn. Syst. 27 (2010), 767-786 | MR | Zbl
, ,[16] The Porous Medium Equation: Mathematical Theory, Oxford Math. Monogr., The Clarendon Press/Oxford University Press, Oxford (2007) | MR
,[17] Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena, Academic Press, New York (1966)
, ,Cité par Sources :