We consider the hyperbolic–elliptic version of the Davey–Stewartson system with cubic nonlinearity posed on the two-dimensional torus. A natural setting for studying blow-up solutions for this equation takes place in , . In this paper, we prove a lower bound on the blow-up rate for these regularities.
@article{AIHPC_2013__30_4_691_0, author = {Godet, Nicolas}, title = {A lower bound on the blow-up rate for the {Davey{\textendash}Stewartson} system on the torus}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {691--703}, publisher = {Elsevier}, volume = {30}, number = {4}, year = {2013}, doi = {10.1016/j.anihpc.2012.12.001}, mrnumber = {3082480}, zbl = {1288.35113}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.001/} }
TY - JOUR AU - Godet, Nicolas TI - A lower bound on the blow-up rate for the Davey–Stewartson system on the torus JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 691 EP - 703 VL - 30 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.001/ DO - 10.1016/j.anihpc.2012.12.001 LA - en ID - AIHPC_2013__30_4_691_0 ER -
%0 Journal Article %A Godet, Nicolas %T A lower bound on the blow-up rate for the Davey–Stewartson system on the torus %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 691-703 %V 30 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.001/ %R 10.1016/j.anihpc.2012.12.001 %G en %F AIHPC_2013__30_4_691_0
Godet, Nicolas. A lower bound on the blow-up rate for the Davey–Stewartson system on the torus. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 4, pp. 691-703. doi : 10.1016/j.anihpc.2012.12.001. http://www.numdam.org/articles/10.1016/j.anihpc.2012.12.001/
[1] The Davey Stewartson system in weak spaces, arXiv:1104.1454 (2011) | MR
,[2] Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math. 159 no. 1 (2005), 187-223 | MR | Zbl
, , ,[3] Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. Éc. Norm. Supér. 38 (2005), 255-301 | EuDML | Numdam | MR | Zbl
, , ,[4] The initial value problem for the elliptic–hyperbolic Davey–Stewartson equation, J. Math. Kyoto Univ. 39 no. 1 (1999), 41-66 | MR | Zbl
,[5] On the initial value problem for the Davey–Stewartson systems, Nonlinearity 3 no. 2 (1990), 475-506 | MR | Zbl
, ,[6] Nonexistence of travelling wave solutions to nonelliptic nonlinear Schrödinger equations, J. Nonlinear Sci. 6 no. 2 (1996), 139-145 | MR | Zbl
, ,[7] Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables dʼespace, Séminaire Bourbaki 796 (1995), 163-187 | EuDML | Numdam | MR
,[8] Strichartz estimates for the periodic non elliptic Schrödinger equation, C. R. Acad. Sci. Paris Sér. I 350 (2012), 955-958 | MR | Zbl
, ,[9] Global well-posedness of the cubic nonlinear Schrödinger equation on closed manifolds, Comm. Partial Differential Equations 37 no. 7 (2012), 1186-1236 | MR | Zbl
,[10] Local existence in time of solutions to the elliptic–hyperbolic Davey–Stewartson system without smallness condition on the data, J. Anal. Math. 73 (1997), 133-164 | MR | Zbl
,[11] Numerical study of blowup in the Davey–Stewartson system, arXiv:1112.4043 (2011) | MR
, , ,[12] Existence and blow-up of solutions to degenerate Davey–Stewartson equations, J. Math. Phys. 41 no. 5 (2000), 2943-2956 | MR | Zbl
, , ,[13] On the Davey–Stewartson systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 no. 5 (1993), 523-548 | EuDML | Numdam | MR | Zbl
, ,[14] Exact blow-up solutions to the Cauchy problem for the Davey–Stewartson systems, Proc. R. Soc. Lond. Ser. A 436 no. 1897 (1992), 345-349 | MR | Zbl
,[15] Mass concentration for the Davey–Stewartson system, Differential Integral Equations 24 no. 3–4 (2011), 261-280 | MR | Zbl
,[16] Periodic cubic hyperbolic Schrödinger equation on , arXiv:1205.5205 (2012) | MR
,[17] Sharp blow-up criteria for the Davey–Stewartson system in , Dyn. Partial Differ. Equ. 8 no. 3 (2011), 239-260 | MR | Zbl
, ,Cité par Sources :