We consider spectral optimization problems with internal inclusion constraints, of the form
Mots-clés : Shape optimization, Capacity, Eigenvalues, Sobolev spaces, Concentration-compactness
@article{AIHPC_2013__30_3_477_0, author = {Bucur, Dorin and Buttazzo, Giuseppe and Velichkov, Bozhidar}, title = {Spectral optimization problems with internal constraint}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {477--495}, publisher = {Elsevier}, volume = {30}, number = {3}, year = {2013}, doi = {10.1016/j.anihpc.2012.10.002}, zbl = {1287.49049}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.10.002/} }
TY - JOUR AU - Bucur, Dorin AU - Buttazzo, Giuseppe AU - Velichkov, Bozhidar TI - Spectral optimization problems with internal constraint JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 477 EP - 495 VL - 30 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.10.002/ DO - 10.1016/j.anihpc.2012.10.002 LA - en ID - AIHPC_2013__30_3_477_0 ER -
%0 Journal Article %A Bucur, Dorin %A Buttazzo, Giuseppe %A Velichkov, Bozhidar %T Spectral optimization problems with internal constraint %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 477-495 %V 30 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.10.002/ %R 10.1016/j.anihpc.2012.10.002 %G en %F AIHPC_2013__30_3_477_0
Bucur, Dorin; Buttazzo, Giuseppe; Velichkov, Bozhidar. Spectral optimization problems with internal constraint. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 3, pp. 477-495. doi : 10.1016/j.anihpc.2012.10.002. http://www.numdam.org/articles/10.1016/j.anihpc.2012.10.002/
[1] Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105-144 | EuDML | Zbl
, ,[2] Open problems on eigenvalues of the Laplacian, Analytic and Geometric Inequalities and Applications, Math. Appl. vol. 478, Kluwer Acad. Publ., Dordrecht (1999), 13-28 | Zbl
,[3] Stopping times and Γ-convergence, Trans. Amer. Math. Soc. 303 no. 1 (1987), 1-38 | Zbl
, ,[4] Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 4 (2009), 1149-1163 | EuDML | Zbl
, ,[5] Uniform concentration-compactness for Sobolev spaces on variable domains, J. Differential Equations 162 (2000), 427-450 | Zbl
,[6] Minimization of the k-th eigenvalue of the Dirichlet Laplacian, Arch. Ration. Mech. Anal. 206 no. 3 (2012), 1073-1083 | Zbl
,[7] Variational Methods in Shape Optimization Problems, Progr. Nonlinear Differential Equations Appl. vol. 65, Birkhäuser Verlag, Basel (2005) | Zbl
, ,[8] On the attainable eigenvalues of the Laplace operator, SIAM J. Math. Anal. 30 no. 3 (1999), 527-536 | Zbl
, , ,[9] Spectral optimization problems, Rev. Mat. Complut. 24 no. 2 (2011), 277-322 | Zbl
,[10] Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions, Appl. Math. Optim. 23 (1991), 17-49 | Zbl
, ,[11] An existence result for a class of shape optimization problems, Arch. Ration. Mech. Anal. 122 (1993), 183-195 | Zbl
, ,[12] An Introduction to Γ-Convergence, Birkhäuser, Boston (1993)
,[13] Wienerʼs criterion and Γ-convergence, Appl. Math. Optim. 15 (1987), 15-63
, ,[14] Asymptotic behavior and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. 24 (1997), 239-290 | EuDML | Numdam | Zbl
, ,[15] Heat Kernels and Spectral Theory, Cambridge University Press (1989) | Zbl
,[16] Finely Harmonic Functions, Lecture Notes in Math. vol. 289, Springer-Verlag, Berlin–New York (1972) | Zbl
,[17] Minimization problems for eigenvalues of the Laplacian, J. Evol. Equ. 3 no. 3 (2003), 443-461 | Zbl
,[18] Extremum Problems for Eigenvalues of Elliptic Operators, Front. Math., Birkhäuser Verlag, Basel (2006) | Zbl
,[19] Variation et Optimisation de Formes, Anal. Geom., Math. Appl. vol. 48, Springer-Verlag, Berlin (2005)
, ,[20] A theorem on fine connectedness, Potential Anal. 12 no. 3 (2000), 221-232 | Zbl
,[21] Existence of minimizers for spectral problems, http://cvgmt.sns.it (2011)
, ,[22] The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 no. 2 (1984), 109-145 | EuDML | Numdam | Zbl
,[23] Weakly Differentiable Functions, Springer-Verlag, Berlin (1989) | Zbl
,Cité par Sources :