We study the nodal solutions of the Lane–Emden–Dirichlet problem
Mots-clés : Superlinear elliptic boundary value problem, Least energy nodal solution, Asymptotic behavior, Variational methods
@article{AIHPC_2013__30_1_121_0, author = {Grossi, Massimo and Grumiau, Christopher and Pacella, Filomena}, title = {Lane{\textendash}Emden problems: {Asymptotic} behavior of low energy nodal solutions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {121--140}, publisher = {Elsevier}, volume = {30}, number = {1}, year = {2013}, doi = {10.1016/j.anihpc.2012.06.005}, mrnumber = {3011294}, zbl = {1266.35106}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.06.005/} }
TY - JOUR AU - Grossi, Massimo AU - Grumiau, Christopher AU - Pacella, Filomena TI - Lane–Emden problems: Asymptotic behavior of low energy nodal solutions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 121 EP - 140 VL - 30 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.06.005/ DO - 10.1016/j.anihpc.2012.06.005 LA - en ID - AIHPC_2013__30_1_121_0 ER -
%0 Journal Article %A Grossi, Massimo %A Grumiau, Christopher %A Pacella, Filomena %T Lane–Emden problems: Asymptotic behavior of low energy nodal solutions %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 121-140 %V 30 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.06.005/ %R 10.1016/j.anihpc.2012.06.005 %G en %F AIHPC_2013__30_1_121_0
Grossi, Massimo; Grumiau, Christopher; Pacella, Filomena. Lane–Emden problems: Asymptotic behavior of low energy nodal solutions. Annales de l'I.H.P. Analyse non linéaire, Tome 30 (2013) no. 1, pp. 121-140. doi : 10.1016/j.anihpc.2012.06.005. http://www.numdam.org/articles/10.1016/j.anihpc.2012.06.005/
[1] Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity, Proc. Amer. Math. Soc. 132 no. 4 (2004), 1013-1019 | MR | Zbl
, ,[2] Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, C. R. Math. Acad. Sci. Paris 339 no. 5 (2004), 339-344 | MR | Zbl
, ,[3] A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear Anal. 22 no. 1 (2003), 1-14 | MR | Zbl
, ,[4] Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math. 96 (2005), 1-18 | MR | Zbl
, , ,[5] Blow-up and nonexistence of sign changing solutions to the Brezis–Nirenberg problem in dimension three, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 no. 4 (2006), 567-589 | EuDML | Numdam | Zbl
, , ,[6] Blow-up and nonexistence of sign changing solutions to the Brezis–Nirenberg problem in dimension three, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 no. 4 (2006), 567-589 | EuDML | Numdam | MR | Zbl
, , ,[7] Classification of low energy sign-changing solutions of an almost critical problem, J. Funct. Anal. 250 no. 2 (2007), 347-373 | MR | Zbl
, , ,[8] Asymptotics and symmetries of least energy nodal solutions of Lane–Emden problems with slow growth, Commun. Contemp. Math. 10 no. 4 (2008), 609-631 | MR | Zbl
, , , ,[9] Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. Théorie et applications, Masson, Paris (1983) | MR | Zbl
,[10] A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math. 27 no. 4 (1997), 1041-1053 | MR | Zbl
, , ,[11] Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, Adv. Nonlinear Stud. 4 no. 1 (2004), 15-36 | MR | Zbl
, ,[12] Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, J. Differential Equations 227 no. 1 (2006), 29-68 | MR | Zbl
, , ,[13] On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity, Proc. Lond. Math. Soc. (3) 94 no. 2 (2007), 497-519 | MR | Zbl
, , ,[14] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 no. 3 (1979), 209-243 | MR | Zbl
, , ,[15] Oddness of least energy nodal solutions on radial domains, Electron. J. Differ. Equ. Conf. 18 (2010), 23-31 | EuDML | MR | Zbl
, ,[16] Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 no. 2 (1991), 159-174 | EuDML | Numdam | MR | Zbl
,[17] Convergence for a Liouville equation, Comment. Math. Helv. 76 no. 3 (2001), 506-514 | MR | Zbl
, ,[18] On the nodal line of the second eigenfunction of the Laplacian in , J. Differential Geom. 35 no. 1 (1992), 255-263 | MR | Zbl
,[19] Symmetry of solutions to semilinear elliptic equations via Morse index, Proc. Amer. Math. Soc. 135 no. 6 (2007), 1753-1762 | MR | Zbl
, ,[20] Single-point condensation and least-energy solutions, Proc. Amer. Math. Soc. 124 no. 1 (1996), 111-120 | MR | Zbl
, ,[21] On a two-dimensional elliptic problem with large exponent in nonlinearity, Trans. Amer. Math. Soc. 343 no. 2 (1994), 749-763 | MR | Zbl
, ,Cité par Sources :