We study the regularity for solutions of fully nonlinear integro differential equations with respect to nonsymmetric kernels. More precisely, we assume that our operator is elliptic with respect to a family of integro differential linear operators where the symmetric parts of the kernels have a fixed homogeneity σ and the skew symmetric parts have strictly smaller homogeneity τ. We prove a weak ABP estimate and regularity. Our estimates remain uniform as we take and so that this extends the regularity theory for elliptic differential equations with dependence on the gradient.
@article{AIHPC_2012__29_6_833_0, author = {Chang Lara, H\'ector and D\'avila, Gonzalo}, title = {Regularity for solutions of nonlocal, nonsymmetric equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {833--859}, publisher = {Elsevier}, volume = {29}, number = {6}, year = {2012}, doi = {10.1016/j.anihpc.2012.04.006}, mrnumber = {2995098}, zbl = {1317.35278}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.006/} }
TY - JOUR AU - Chang Lara, Héctor AU - Dávila, Gonzalo TI - Regularity for solutions of nonlocal, nonsymmetric equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 833 EP - 859 VL - 29 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.006/ DO - 10.1016/j.anihpc.2012.04.006 LA - en ID - AIHPC_2012__29_6_833_0 ER -
%0 Journal Article %A Chang Lara, Héctor %A Dávila, Gonzalo %T Regularity for solutions of nonlocal, nonsymmetric equations %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 833-859 %V 29 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.006/ %R 10.1016/j.anihpc.2012.04.006 %G en %F AIHPC_2012__29_6_833_0
Chang Lara, Héctor; Dávila, Gonzalo. Regularity for solutions of nonlocal, nonsymmetric equations. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 6, pp. 833-859. doi : 10.1016/j.anihpc.2012.04.006. http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.006/
[1] Second-order elliptic integro differential equations: viscosity solutions theory revisited, Annales de lʼInstitut Henri Poincaré, Analyse Non Linéaire 3 (2008), 567-585 | EuDML | Numdam | MR | Zbl
, ,[2] Hölder continuity of harmonic functions with respect to operators of variable order, Communications in Partial Differential Equations 8 (2005), 1249-1259 | MR | Zbl
, ,[3] Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications vol. 43, American Mathematical Society, Providence, RI (1995) | MR | Zbl
, ,[4] Regularity theory for fully nonlinear integro differential equations, Communications on Pure and Applied Mathematics 5 (2009), 597-638 | MR | Zbl
, ,[5] Regularity results for nonlocal equations by approximation, Archive for Rational Mechanics and Analysis 1 (2011), 59-88 | MR | Zbl
, ,[6] The Evans–Krylov theorem for non local fully non linear equations, Annals of Mathematics 2 (2011), 1163-1187 | MR | Zbl
, ,[7] Regularity results for fully nonlinear integro differential operators with nonsymmetric positive kernels, arXiv:1011.3565v2 [math.AP] | MR | Zbl
, ,[8] Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana University Mathematics Journal 3 (2006), 1155-1174 | MR | Zbl
,[9] Optimal control with state-space constraint II, SIAM Journal on Control and Optimization 6 (1986), 1110-1122 | MR | Zbl
,Cité par Sources :