We consider Cauchy problems and periodic problems for two-fluid compressible Euler–Maxwell equations arising in the modeling of magnetized plasmas. These equations are symmetrizable hyperbolic in the sense of Friedrichs but donʼt satisfy the so-called Kawashima stability condition. For both problems, we prove the global existence and long-time behavior of smooth solutions near a given constant equilibrium state. As a byproduct, we obtain similar results for two-fluid compressible Euler–Poisson equations.
Mots-clés : Two-fluid flows, Euler–Maxwell equations, Partially dissipative hyperbolic systems, Global smooth solutions, Long-time behavior, Energy estimates
@article{AIHPC_2012__29_5_737_0, author = {Peng, Yue-Jun}, title = {Global existence and long-time behavior of smooth solutions of two-fluid {Euler{\textendash}Maxwell} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {737--759}, publisher = {Elsevier}, volume = {29}, number = {5}, year = {2012}, doi = {10.1016/j.anihpc.2012.04.002}, mrnumber = {2971029}, zbl = {1251.35159}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.002/} }
TY - JOUR AU - Peng, Yue-Jun TI - Global existence and long-time behavior of smooth solutions of two-fluid Euler–Maxwell equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 737 EP - 759 VL - 29 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.002/ DO - 10.1016/j.anihpc.2012.04.002 LA - en ID - AIHPC_2012__29_5_737_0 ER -
%0 Journal Article %A Peng, Yue-Jun %T Global existence and long-time behavior of smooth solutions of two-fluid Euler–Maxwell equations %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 737-759 %V 29 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.002/ %R 10.1016/j.anihpc.2012.04.002 %G en %F AIHPC_2012__29_5_737_0
Peng, Yue-Jun. Global existence and long-time behavior of smooth solutions of two-fluid Euler–Maxwell equations. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 5, pp. 737-759. doi : 10.1016/j.anihpc.2012.04.002. http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.002/
[1] Global existence of smooth solutions of the N-dimensional Euler–Poisson model, SIAM J. Appl. Math. 35 (2003), 389-422 | MR | Zbl
,[2] Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasmas, J. Differential Equations 190 (2003), 663-685 | MR | Zbl
, ,[3] Large time asymptotics for partially dissipative hyperbolic systems, Arch. Ration. Mech. Anal. 199 (2011), 177-227 | MR | Zbl
, ,[4] A model hierarchy for ionospheric plasma modeling, Math. Models Methods Appl. Sci. 14 (2004), 393-415 | MR | Zbl
, , , , , ,[5] Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Comm. Pure Appl. Math. 60 (2007), 1559-1622 | MR | Zbl
, , ,[6] Semilinear behavior for totally linearly degenerate hyperbolic systems with relaxation, J. Differential Equations 246 (2009), 291-319 | MR | Zbl
, , ,[7] Introduction to Plasma Physics and Controlled Fusion, vol. 1, Plenum Press, New York (1984)
,[8] Compressible Euler–Maxwell equations, Transport Theory Statist. Phys. 29 (2000), 311-331 | MR | Zbl
, , ,[9] Numerical approximation of the Euler–Maxwell model in the quasineutral limit, J. Comput. Phys. 231 (2012), 1917-1946 | MR | Zbl
, , ,[10] Global smooth flows for the compressible Euler–Maxwell system: the relaxation case, J. Hyperbolic Differ. Equ. 8 (2011), 375-413 | MR | Zbl
,[11] Partial Differential Equations, Grad. Stud. Math. vol. 19, American Mathematical Society, Providence, RI (1998) | MR
,[12] Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math. 7 (1954), 345-392 | MR | Zbl
,[13] Global existence for the Euler–Maxwell system, arXiv:1107.1595 (2011) | MR
, ,[14] Smooth irrotational flows in the large to the Euler–Poisson system in , Comm. Math. Phys. 195 (1998), 249-265 | MR | Zbl
,[15] Stability of semiconductor states with insulating and contact boundary conditions, Arch. Ration. Mech. Anal. 179 (2006), 1-30 | MR | Zbl
, ,[16] Global existence of smooth solutions for partial dissipative hyperbolic systems with a convex entropy, Arch. Ration. Mech. Anal. 169 (2003), 89-117 | MR | Zbl
, ,[17] The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors, J. Differential Equations 192 (2003), 111-133 | MR | Zbl
, , ,[18] The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal. 58 (1975), 181-205 | MR | Zbl
,[19] Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math. 34 (1981), 481-524 | MR | Zbl
, ,[20] Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New York (1984) | MR | Zbl
,[21] Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift diffusion equations, Arch. Ration. Mech. Anal. 129 (1995), 129-145 | MR | Zbl
, ,[22] Semiconductor Equations, Springer-Verlag, New York (1990) | MR
, , ,[23] T. Nishida, Nonlinear hyperbolic equations and related topics in fluids dynamics, in: Publications Mathématiques dʼOrsay, No. 78-02, Université Paris-Sud, Orsay, 1978. | MR
[24] Convergence of compressible Euler–Maxwell equations to compressible Euler–Poisson equations, Chin. Ann. Math. Ser. B 28 (2007), 583-602 | MR | Zbl
, ,[25] Convergence of compressible Euler–Maxwell equations to incompressible Euler equations, Comm. Partial Differential Equations 33 (2008), 349-376 | MR | Zbl
, ,[26] Rigorous derivation of incompressible e-MHD equations from compressible Euler–Maxwell equations, SIAM J. Math. Anal. 40 (2008), 540-565 | MR | Zbl
, ,[27] Asymptotic expansions in two-fluid compressible Euler–Maxwell equations with small parameters, Discrete Contin. Dyn. Syst. 23 (2009), 415-433 | MR | Zbl
, ,[28] Relaxation limit and global existence of smooth solutions of compressible Euler–Maxwell equations, SIAM J. Math. Anal. 43 (2011), 944-970 | MR | Zbl
, , ,[29] Global solutions to the isothermal Euler–Poisson system with arbitrarily large data, J. Differential Equations 123 (1995), 93-121 | MR | Zbl
, , ,[30] Introduction to Ionospheric Physics, Academic Press (1969)
, ,[31] Systems of equations of hyperbolic–parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J. 14 (1985), 249-275 | MR | Zbl
, ,[32] WKB asymptotics for the Euler–Maxwell equations, Asymptot. Anal. 42 (2005), 211-250 | MR | Zbl
,[33] Global classical solutions to the compressible Euler–Maxwell equations, SIAM J. Math. Anal. 43 (2011), 2688-2718 | MR | Zbl
,[34] Entropy and global existence for hyperbolic balance laws, Arch. Ration. Mech. Anal. 172 (2004), 247-266 | MR | Zbl
,[35] Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation, Arch. Ration. Mech. Anal. 150 (1999), 225-279 | MR | Zbl
,[36] Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices, Comm. Math. Phys. 157 (1993), 1-22 | MR | Zbl
,Cité par Sources :