We characterize the relaxation of the perimeter in an infinite dimensional Wiener space, with respect to the weak -topology. We also show that the rescaled Allen–Cahn functionals approximate this relaxed functional in the sense of Γ-convergence.
@article{AIHPC_2012__29_4_525_0, author = {Goldman, M. and Novaga, M.}, title = {Approximation and relaxation of perimeter in the {Wiener} space}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {525--544}, publisher = {Elsevier}, volume = {29}, number = {4}, year = {2012}, doi = {10.1016/j.anihpc.2012.01.008}, mrnumber = {2948287}, zbl = {1244.49074}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.008/} }
TY - JOUR AU - Goldman, M. AU - Novaga, M. TI - Approximation and relaxation of perimeter in the Wiener space JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 525 EP - 544 VL - 29 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.008/ DO - 10.1016/j.anihpc.2012.01.008 LA - en ID - AIHPC_2012__29_4_525_0 ER -
%0 Journal Article %A Goldman, M. %A Novaga, M. %T Approximation and relaxation of perimeter in the Wiener space %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 525-544 %V 29 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.008/ %R 10.1016/j.anihpc.2012.01.008 %G en %F AIHPC_2012__29_4_525_0
Goldman, M.; Novaga, M. Approximation and relaxation of perimeter in the Wiener space. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 4, pp. 525-544. doi : 10.1016/j.anihpc.2012.01.008. http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.008/
[1] BV functions in a Hilbert space with respect to a Gaussian measure, Rend. Accad. Lincei 21 no. 4 (2010), 405-414 | MR | Zbl
, , ,[2] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Sci. Publ. (2000) | MR | Zbl
, , ,[3] Surface measures and convergence of the Ornstein–Uhlenbeck semigroup in Wiener spaces, Ann. Fac. Sci. Toulouse Math. 20 no. 6 (2011), 407-438 | EuDML | Numdam | MR | Zbl
, ,[4] BV functions in abstract Wiener spaces, J. Funct. Anal. 258 no. 3 (2010), 785-813 | MR | Zbl
, , , ,[5] Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability, Discrete Contin. Dyn. Syst. Ser. A 28 (2010), 591-606 | MR | Zbl
, , ,[6] Lévy–Gromovʼs isoperimetric inequality for an infinite dimensional diffusion generator, Invent. Math. 123 (1996), 259-281 | EuDML | MR | Zbl
, ,[7] An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space, Ann. Probab. 25 no. 1 (1997), 206-214 | MR | Zbl
,[8] Gaussian Measures, Math. Surveys Monogr. vol. 62, Amer. Math. Soc., Providence (1998) | MR | Zbl
,[9] Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 384 (1988), 153-179 | EuDML | MR | Zbl
, ,[10] On the cases of equality in Bobkovʼs inequality and Gaussian rearrangement, Calc. Var. Partial Differential Equations 13 (2001), 1-18 | MR | Zbl
, ,[11] Perimeter of sublevel sets in infinite dimensional spaces, Adv. Calc. Var. 5 no. 1 (2012), 59-76 | MR | Zbl
, , , ,[12] Total variation and Cheeger sets in Gauss space, J. Funct. Anal. 259 no. 6 (2010), 1491-1516 | MR | Zbl
, , ,[13] A. Chambolle, M. Goldman, M. Novaga, Representation, relaxation and convexity for variational problems in Wiener spaces, preprint, 2011. | MR
[14] Functions of bounded variation and rearrangements, Arch. Ration. Mech. Anal. 165 (2002), 1-40 | MR | Zbl
, ,[15] On the isoperimetric deficit in the Gauss space, Amer. J. Math. 133 no. 1 (2011), 131-186 | MR | Zbl
, , , ,[16] An Introduction to Γ-Convergence, Birkhäuser, Boston (1993) | MR
,[17] Convex functions of a measure and applications, Indiana Univ. Math. J. 33 (1984), 673-709 | MR | Zbl
, ,[18] Symétrisation dans lʼespace de Gauss, Math. Scand. 53 no. 2 (1983), 281-301 | EuDML | MR | Zbl
,[19] Inégalités isopérimétriques et intégrales de Dirichlet gaussiennes, Ann. Sci. Ec. Norm. Super. 17 (1984), 317-332 | EuDML | Numdam | MR | Zbl
,[20] Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press (1992) | MR | Zbl
, ,[21] BV functions and distorted Ornstein–Uhlenbeck processes over the abstract Wiener space, J. Funct. Anal. 174 (2000), 227-249 | MR | Zbl
,[22] On the space of BV functions and a related stochastic calculus in infinite dimensions, J. Funct. Anal. 183 (2001), 245-268 | MR | Zbl
, ,[23] Minimal Surfaces and Functions of Bounded Variation, Springer Monogr. Math. vol. 80, Birkhäuser (1984) | MR | Zbl
,[24] Analysis, Grad. Stud. Math. vol. 14, Amer. Math. Soc., Providence (2001) | MR
, ,[25] Isoperimetry and Gaussian Analysis, Lecture Notes in Math. vol. 1648, Springer (1996) | MR | Zbl
,[26] Stochastic Analysis, Grundlehren Math., Springer (1997) | MR
,[27] The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal. 98 (1987), 123-142 | MR | Zbl
,[28] Un esempio di -convergenza, Boll. Unione Mat. Ital. 14 no. 5 (1977), 285-299 | MR | Zbl
, ,Cité par Sources :