Soit
For an integrable potential q on the unit interval, let
Mots-clés : Eigenvalue, Potential, Extremal value, Measure differential equation, Weak topology
@article{AIHPC_2012__29_4_501_0, author = {Zhang, Meirong}, title = {Minimization of the zeroth {Neumann} eigenvalues with integrable potentials}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {501--523}, publisher = {Elsevier}, volume = {29}, number = {4}, year = {2012}, doi = {10.1016/j.anihpc.2012.01.007}, mrnumber = {2948286}, zbl = {1252.34099}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2012.01.007/} }
TY - JOUR AU - Zhang, Meirong TI - Minimization of the zeroth Neumann eigenvalues with integrable potentials JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 501 EP - 523 VL - 29 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2012.01.007/ DO - 10.1016/j.anihpc.2012.01.007 LA - en ID - AIHPC_2012__29_4_501_0 ER -
%0 Journal Article %A Zhang, Meirong %T Minimization of the zeroth Neumann eigenvalues with integrable potentials %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 501-523 %V 29 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2012.01.007/ %R 10.1016/j.anihpc.2012.01.007 %G en %F AIHPC_2012__29_4_501_0
Zhang, Meirong. Minimization of the zeroth Neumann eigenvalues with integrable potentials. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 4, pp. 501-523. doi : 10.1016/j.anihpc.2012.01.007. https://www.numdam.org/articles/10.1016/j.anihpc.2012.01.007/
[1] Extremal problems for eigenvalues of the Sturm–Liouville type, General Inequalities 5, Oberwolfach, 1986, Internat. Schriftenreihe Numer. Math. vol. 80, Birkhäuser, Basel (1987), 319-336 | MR
,[2] Analysis of the periodically fragmented environment model, I. Species persistence, J. Math. Biol. 51 (2005), 75-113 | MR | Zbl
, , ,[3] The Lebesgue–Stieltjes Integral: A Practical Introduction, Springer-Verlag, New York (2000) | MR | Zbl
, ,[4] Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight, J. Math. Anal. Appl. 371 (2010), 69-79 | MR | Zbl
, , ,[5] Linear Operators, Part I, Interscience Publishers, New York (1958) | MR | Zbl
, ,[6] Symmetry properties for the extremals of the Sobolev trace embedding, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 795-805 | EuDML | Numdam | MR | Zbl
, , ,[7] Extremal eigenvalues and their associated nonlinear equations, Boll. Un. Mat. Ital. B (7) 10 (1996), 625-649 | MR | Zbl
,[8] Sharp estimates for the eigenvalues of some differential equations, SIAM J. Math. Anal. 29 (1998), 1279-1300 | MR | Zbl
,[9] On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability, Amer. Math. Soc. Transl. Ser. 2 no. 1 (1955), 163-187 | MR | Zbl
,[10] Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics, Japan J. Indust. Appl. Math. 23 (2006), 275-292 | MR | Zbl
, ,[11] Hillʼs Equation, Dover, New York (1979) | MR
, ,[12] An extremal eigenvalue problem, Comm. Pure Appl. Math. 29 (1976), 517-529 | MR | Zbl
, ,[13] An Introduction to Banach Space Theory, Graduate Texts Math. vol. 183, Springer-Verlag, New York (1998) | MR | Zbl
,[14] G. Meng, Continuity of solutions and eigenvalues in measures with weak⁎ topology, Doctoral Dissertation, Tsinghua University, Beijing, 2009.
[15] Spectrum of one-dimensional p-Laplacian with an indefinite integrable weight, Mediterr. J. Math. 7 (2010), 225-248 | MR | Zbl
, , ,[16] Volterra–Stieltjes Integral Equations and Generalized Ordinary Differential Expressions, Lect. Notes Math. vol. 989, Springer-Verlag, Berlin (1983) | Zbl
,[17] Differentiable dependence of eigenvalues of operators in Banach spaces, J. Operator Theory 36 (1996), 335-355 | MR | Zbl
, ,[18] Extremal properties of the first eigenvalue of Schrödinger-type operators, J. Funct. Anal. 156 (1998), 333-346 | MR | Zbl
,[19] The Inverse Spectral Theory, Academic Press, New York (1987) | MR | Zbl
, ,[20] Mathematical analysis of the optimal habitat configurations for species persistence, Math. Biosci. 210 (2007), 34-59 | MR | Zbl
, ,[21] Generalized Ordinary Differential Equations, World Scientific, Singapore (1992) | MR | Zbl
,
[22] Extremal values of eigenvalues of Sturm–Liouville operators with potentials in
[23] Continuity in weak topology and extremal problems of eigenvalues of the p-Laplacian, Trans. Amer. Math. Soc. 363 (2011), 2003-2028 | MR | Zbl
, ,[24] Variational problems associated with extremal properties of the first eigenvalue of a problem of Sturm–Liouville type, Differential Equations 32 (1996), 1331-1336 | MR | Zbl
,[25] Sturm–Liouville Theory, Math. Surveys & Monographs vol. 121, Amer. Math. Soc., Providence, RI (2005) | MR | Zbl
,[26] The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials, J. London Math. Soc. (2) 64 (2001), 125-143 | MR | Zbl
,[27] Certain classes of potentials for p-Laplacian to be non-degenerate, Math. Nachr. 278 (2005), 1823-1836 | MR | Zbl
,[28] Continuity in weak topology: Higher order linear systems of ODE, Sci. China Ser. A 51 (2008), 1036-1058 | MR | Zbl
,
[29] Extremal values of smallest eigenvalues of Hillʼs operators with potentials in
[30] Extremal eigenvalues of measure differential equations with fixed variation, Sci. China Math. 53 (2010), 2573-2588 | MR | Zbl
,Cité par Sources :