Let and let be p-quasicontinuous. We find an optimal value of such that for a.e. the Hausdorff dimension of is at most α. We construct an example to show that the value of the optimal β does not increase once p goes below the critical case .
Mots-clés : Sobolev mapping, Hausdorff dimension
@article{AIHPC_2012__29_3_401_0, author = {Hencl, Stanislav and Honz{\'\i}k, Petr}, title = {Dimension of images of subspaces under {Sobolev} mappings}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {401--411}, publisher = {Elsevier}, volume = {29}, number = {3}, year = {2012}, doi = {10.1016/j.anihpc.2012.01.002}, zbl = {1245.28006}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.002/} }
TY - JOUR AU - Hencl, Stanislav AU - Honzík, Petr TI - Dimension of images of subspaces under Sobolev mappings JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 401 EP - 411 VL - 29 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.002/ DO - 10.1016/j.anihpc.2012.01.002 LA - en ID - AIHPC_2012__29_3_401_0 ER -
%0 Journal Article %A Hencl, Stanislav %A Honzík, Petr %T Dimension of images of subspaces under Sobolev mappings %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 401-411 %V 29 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.002/ %R 10.1016/j.anihpc.2012.01.002 %G en %F AIHPC_2012__29_3_401_0
Hencl, Stanislav; Honzík, Petr. Dimension of images of subspaces under Sobolev mappings. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 3, pp. 401-411. doi : 10.1016/j.anihpc.2012.01.002. http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.002/
[1] Z.M. Balogh, R. Monti, J.T. Tyson, Frequency of Sobolev and quasiconformal dimension distortion, preprint, 2010.
[2] Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. 6 no. 2 (1973), 504-512 | Zbl
, ,[3] Sobolev spaces, dimension, and random series, Proc. Amer. Math. Soc. 128 no. 2 (2000), 427-431 | Zbl
,[4] Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics vol. 44, Cambridge University Press (1995)
,[5] Weakly Differentiable Functions, Graduate Texts in Mathematics vol. 120, Springer-Verlag (1989) | Zbl
,Cité par Sources :