Dimension of images of subspaces under Sobolev mappings
Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 3, pp. 401-411.

Let m<α<pn and let fW 1,p ( n , k ) be p-quasicontinuous. We find an optimal value of β(n,m,p,α) such that for β a.e. y(0,1) n-m the Hausdorff dimension of f((0,1) m ×{y}) is at most α. We construct an example to show that the value of the optimal β does not increase once p goes below the critical case p<α.

DOI : 10.1016/j.anihpc.2012.01.002
Classification : 46E35, 28A78
Mots-clés : Sobolev mapping, Hausdorff dimension
@article{AIHPC_2012__29_3_401_0,
     author = {Hencl, Stanislav and Honz{\'\i}k, Petr},
     title = {Dimension of images of subspaces under {Sobolev} mappings},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {401--411},
     publisher = {Elsevier},
     volume = {29},
     number = {3},
     year = {2012},
     doi = {10.1016/j.anihpc.2012.01.002},
     zbl = {1245.28006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.002/}
}
TY  - JOUR
AU  - Hencl, Stanislav
AU  - Honzík, Petr
TI  - Dimension of images of subspaces under Sobolev mappings
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2012
SP  - 401
EP  - 411
VL  - 29
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.002/
DO  - 10.1016/j.anihpc.2012.01.002
LA  - en
ID  - AIHPC_2012__29_3_401_0
ER  - 
%0 Journal Article
%A Hencl, Stanislav
%A Honzík, Petr
%T Dimension of images of subspaces under Sobolev mappings
%J Annales de l'I.H.P. Analyse non linéaire
%D 2012
%P 401-411
%V 29
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.002/
%R 10.1016/j.anihpc.2012.01.002
%G en
%F AIHPC_2012__29_3_401_0
Hencl, Stanislav; Honzík, Petr. Dimension of images of subspaces under Sobolev mappings. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 3, pp. 401-411. doi : 10.1016/j.anihpc.2012.01.002. http://www.numdam.org/articles/10.1016/j.anihpc.2012.01.002/

[1] Z.M. Balogh, R. Monti, J.T. Tyson, Frequency of Sobolev and quasiconformal dimension distortion, preprint, 2010.

[2] F.W. Gehring, J. Väisälä, Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. 6 no. 2 (1973), 504-512 | Zbl

[3] R. Kaufman, Sobolev spaces, dimension, and random series, Proc. Amer. Math. Soc. 128 no. 2 (2000), 427-431 | Zbl

[4] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies in Advanced Mathematics vol. 44, Cambridge University Press (1995)

[5] W.P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics vol. 120, Springer-Verlag (1989) | Zbl

Cité par Sources :