Dans cet article nous montrons lʼexistence dʼune infinité de solutions qui changent de signe pour le système dʼéquations de Schrödinger avec des interactions compétitives
In this paper we prove the existence of infinitely many sign-changing solutions for the system of m Schrödinger equations with competition interactions
@article{AIHPC_2012__29_2_279_0, author = {Tavares, Hugo and Terracini, Susanna}, title = {Sign-changing solutions of competition{\textendash}diffusion elliptic systems and optimal partition problems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {279--300}, publisher = {Elsevier}, volume = {29}, number = {2}, year = {2012}, doi = {10.1016/j.anihpc.2011.10.006}, mrnumber = {2901198}, zbl = {1241.35046}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.10.006/} }
TY - JOUR AU - Tavares, Hugo AU - Terracini, Susanna TI - Sign-changing solutions of competition–diffusion elliptic systems and optimal partition problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2012 SP - 279 EP - 300 VL - 29 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2011.10.006/ DO - 10.1016/j.anihpc.2011.10.006 LA - en ID - AIHPC_2012__29_2_279_0 ER -
%0 Journal Article %A Tavares, Hugo %A Terracini, Susanna %T Sign-changing solutions of competition–diffusion elliptic systems and optimal partition problems %J Annales de l'I.H.P. Analyse non linéaire %D 2012 %P 279-300 %V 29 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2011.10.006/ %R 10.1016/j.anihpc.2011.10.006 %G en %F AIHPC_2012__29_2_279_0
Tavares, Hugo; Terracini, Susanna. Sign-changing solutions of competition–diffusion elliptic systems and optimal partition problems. Annales de l'I.H.P. Analyse non linéaire, Tome 29 (2012) no. 2, pp. 279-300. doi : 10.1016/j.anihpc.2011.10.006. http://www.numdam.org/articles/10.1016/j.anihpc.2011.10.006/
[1] A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations 37 (2010), 345-361 | MR | Zbl
, , ,[2] Sign changing solutions of superlinear Schrödinger equations, Comm. Partial Differential Equations 29 (2004), 25-42 | MR | Zbl
, , ,[3] Optimal partitions for eingenvalues, J. Sci. Comp. 6 (2009), 4100-4114 | MR | Zbl
, , ,[4] Existence results for some optimal partition problems, Adv. Math. Sci. Appl. 8 (1998), 571-579 | MR | Zbl
, , ,[5] Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Amer. Math. Soc. 21 (2008), 847-862 | MR | Zbl
, ,[6] An optimal partition problem for eigenvalues, J. Sci. Comp. 31 (2007), 5-18 | MR | Zbl
, ,[7] Segregated nodal domains of two-dimensional multispecies Bose–Einstein condensates, Phys. D 196 (2004), 341-361 | MR | Zbl
, , , ,[8] On a new index theory and non semi-trivial solutions for elliptic systems, Discrete Contin. Dyn. Syst. 28 (2010), 809-826 | MR | Zbl
, , ,[9] On a class of optimal partition problems related to the Fucik spectrum and to the monotonicity formula, Calc. Var. Partial Differential Equations 22 (2005), 45-72 | MR | Zbl
, , ,[10] Remarks on variational methods and lower-upper solutions, NoDEA Nonlinear Differential Equations Appl. 6 (1999), 371-393 | MR | Zbl
, , ,[11] A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 953-969 | Numdam | Zbl
, , ,[12] A. Domingos, M. Ramos, Existence and bounds for nonlinear Schrödinger systems with strong competition, preprint, 2011.
[13] Borsuk–Ulam type theorems on product spaces I, Bull. Polish Acad. Sci. Math. 48 (2000), 379-386 | Zbl
, , ,[14] Borsuk–Ulam type theorems on product spaces II, Topol. Methods Nonlinear Anal. 14 (1999), 345-352 | Zbl
, , ,[15] Nodal domains and spectral minimal partitions, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 101-138 | EuDML | Numdam | Zbl
, , ,[16] A Bahri–Lions theorem revisited, Adv. Math. 222 (2009), 2173-2195 | Zbl
, , ,[17] Existence and bounds of positive solutions for a nonlinear Schrödinger system, Proc. Amer. Math. Soc. 138 (2010), 1681-1692 | Zbl
, ,[18] B. Noris, H. Tavares, S. Terracini, G. Verzini, Convergence of minimax and continuation of critical points for singularly perturbed systems, J. Eur. Math. Soc., in press.
[19] Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math. 63 (2010), 267-302 | Zbl
, , , ,[20] Regularity of the nodal set of segregated critical configurations, arXiv:1002.3822 (2010)
, ,[21] Asymptotic behaviour of solutions of planar elliptic systems with strong competition, Nonlinearity 21 (2008), 305-317 | Zbl
, ,[22] The Borsuk–Ulam theorem on product space, (ed.), Fixed Point Theory and Applications, World Sci. Publ., River Edge, NJ (1992), 362-372
,Cité par Sources :